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Abstract. Mainstream philosophy of mathematics, namely
the philosophy of mathematics that has prevailed for
the past century, holds that mathematics is theorem
proving by the axiomatic method. But this is incompat-
ible with Godel’s incompleteness theorems, and cannot
account for many features of mathematics. This article
proposes an alternative approach, heuristic philosophy
of mathematics, according to which mathematics is
problem-solving by the analytic method. The article
argues that this is compatible with Godel’s incomplete-
ness theorems, and can account for the features of
mathematics not accounted for by mainstream philoso-
phy of mathematics, such as the nature of mathematical
objects and mathematical definitions.
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§ 1. — Introduction.

The purpose of this article is to outline the main aspects of heuris-
tic philosophy of mathematics.

Heuristic philosophy of mathematics is an approach to the phi-
losophy of mathematics alternative to mainstream philosophy of
mathematics, the philosophy of mathematics that has prevailed for
the past century

Mainstream philosophy of mathematics consists of the three
big foundational schools (logicism, formalism, intuitionism), their
direct descendants (neo-logicism, neo-formalism, neo-intuitionism),
and their indirect descendants (platonism, structuralism, fictional-
ism, nominalism, etc.).

The three big foundational schools and their direct or indi-
rect descendants are different in several respects but have certain
characteristics in common. These characteristics may serve to char-
acterize mainstream philosophy of mathematics.

§ 2. — Mainstream Philosophy of Mathematics.

The main characteristics of mainstream philosophy of mathemat-
ics are the following.

(1) The philosophy of mathematics cannot concern itself with
the making of mathematics, in particular discovery, because dis-
covery is a subjective process, so it cannot be justified.

(2) The philosophy of mathematics can concern itself only with
finished mathematics, namely mathematics as presented in fin-
ished form in journals, books, or lectures, because only finished
mathematics is objective, so it can be justified.

(3) Since the philosophy of mathematics cannot concern itself
with the making of mathematics, it cannot contribute to the
advancement of mathematics.

(4) The task of the philosophy of mathematics is primarily to
give an answer to the question: How do mathematical propositions
come to be completely justified? And, subordinately to it, to the
question: Do objects exist in virtue of which mathematical proposi-
tions are true (in some sense of ‘true’)? And, if such objects exist,
what is their nature?

(5) The method of mathematics is the axiomatic method. The
latter is the method according to which, to obtain a demonstration
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of a proposition, one starts from given axioms, which are true (in
some sense of ‘true”’), and deduces the proposition from them.

(6) The role of demonstration is to guarantee the truth of a propo-
sition.

(7) Mathematics is a body of truths, and indeed truths that are
certain. Therefore, mathematics is about truth and certainty.

§ 3. — Mainstream Philosophy of Mathematics and
Closed Systems.

From the above description of the main characteristics of main-
stream philosophy of mathematics, it appears that a basic assump-
tion of mainstream philosophy of mathematics is that mathematics
is theorem proving by the axiomatic method.

The basic assumption implies that mathematical theories are
closed systems. A closed system is a system whose development
does not involve receiving inputs from and delivering outputs to
the outside. Its development remains completely internal to the
system, so the system is a self-sufficient totality.

The basic assumption implies that mathematical theories are
closed systems because a mathematical theory is based on axioms
that are given once for all, and its development consists entirely in
deducing propositions from the axioms.

Now, deduction is non-ampliative, namely the conclusion con-
tains nothing essentially new with respect to the premisses. For,
as Russell says, a deductive inference “consists merely in saying
in other words part or the whole of what is said in the premisses”
(Russell 1997, 360).

That deduction is non-ampliative has been repeatedly pointed
out from antiquity. Thus, Epicurus says that “we will not say
that syllogism can make us know anything new” (Epicurus, De
natura, XXVIIL, 17, 1, ed. Sedley). Descartes says that logicians can-
not “form any syllogism leading to a true conclusion unless” they
“already knew the very same truth which is deduced in the syllo-
gism,” so they “can learn nothing new from such form of reasoning”
(Descartes 1996, X, 406). Kant says that “using deduction as a tool
for an expansion of information comes down to nothing but idle
chatter” (Kant 1998, A61/B86). De Morgan says that deduction is
subject “to the great rule of all search after truth, that nothing is to
be asserted as a conclusion, more than is actually contained in the
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premises” (De Morgan 1835, 99). Mill says that, in the conclusion of
a deduction, there is “nothing but what was already asserted in the
premisses” (Mill 1963-1986, VII, 160). Peirce says that deduction
“is evidently entirely inadequate to” go “beyond the facts given in
the premisses” (Peirce 1931-1958, 2.681). Poincaré says that deduc-
tion is “incapable of adding anything to the data” which are “given
it; these data reduce themselves” to “axioms, and we should find
nothing else in the conclusions” (Poincaré 2015, 31). Wittgenstein
says that “if one proposition follows from another, then the latter
says more than the former, and the former says less than the latter”
(Wittgenstein 2002, 5.14).

Since deduction is non-ampliative, the propositions deduced
from the axioms are already implicitly contained in the axioms.
Therefore, the development of a mathematical theory remains com-
pletely internal to the theory, it does not involve interactions with
other mathematical theories.

As Hintikka says, in the axiomatic method you compress “all the
truths about” a given “subject matter into” a “set of axioms,” which
“are supposed to tell you everything there is to be told about this
subject matter” (Hintikka 1998, 1). Then “the rest of your work will
consist in merely teasing out the logical consequences of the axioms.
It is sufficient to study the axioms” (ibid., 2).

§ 4. — Mainstream Philosophy of Mathematics and
Godel’s Incompleteness Theorems.

The basic assumption of mainstream philosophy of mathematics,
that mathematics is theorem proving by the axiomatic method, is
refuted by Godel’s incompleteness theorems.

The basic assumption is refuted by Godel’s first incomplete-
ness theorem because, by the latter, for any consistent, sufficiently
strong, formal system, there are propositions of the system that are
true but cannot be deduced from the axioms of the system. This
implies that mathematics cannot consist in the deduction of propo-
sitions from given axioms because, for any choice of axioms for a
given part of mathematics, there will always be true propositions
of that part which cannot be deduced from the axioms.

The basic assumption is also refuted by Godel’s second incom-
pleteness theorem because, by the latter, for any consistent, suffi-
ciently strong, formal system, it is impossible to demonstrate, by
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absolutely reliable means, that the axioms of the system are con-
sistent. So, there is no guarantee that the propositions deduced
from the axioms are justified knowledge, because from inconsistent

axioms all propositions, even logically contradictory ones, can be
deduced.

§ 5. — Other Shortcomings of Mainstream Philosophy
of Mathematics.

In addition to the shortcoming shown by Godel’s incompleteness
theorems, mainstream philosophy of mathematics has other short-
comings.

(1) Mainstream philosophy of mathematics does not account for
the fact that solving a problem of a given part of mathematics may
require hypotheses from other parts of mathematics.

For example, to solve the problem posed by Fermat’s conjecture,
which is a problem about the integers, Ribet used a hypothesis
about modular forms in hyperbolic space, the Taniyama-Shimura
conjecture: Every elliptic curve over the rational numbers is mod-
ular. Then, to solve the problem posed by the Taniyama-Shimura
conjecture, Wiles and Taylor used hypotheses from various parts of
mathematics, from differential geometry to complex analysis.

Mainstream philosophy of mathematics does not account for this
fact because, according to it, a solution to a problem of a given part
of mathematics should be deduced from the axioms for that part.

(2) Mainstream philosophy of mathematics does not account for
the fact that a demonstration yields something new.

For, according to it, a solution to a problem is deduced from
the axioms. Now, a deduction from the axioms cannot yield any-
thing essentially new with respect to them because, as already said,
deductive rules are non-ampliative.

(3) Mainstream philosophy of mathematics does not account for
the fact that new solutions, even hundreds of them, are often sought
for problems for which a solution is already known.

In fact, giving new demonstrations of result already demon-
strated has been a salient feature of mathematics since antiquity. As
Knorr says, “multiple proofs were frequently characteristic of pre-
Euclidean studies” (Knorr 1975, 9). But they have been frequently
characteristic of post-Euclidean studies as well. For example, for
the Pythagorean theorem over four hundred demonstrations are
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known, and their number is still growing. As another example,
a Fields Medal was awarded to Selberg (among other important
results) for producing a new demonstration of a theorem, the
prime-number theorem, for which a demonstration was already
known. For several examples of theorems with multiple demon-
strations, see Dawson (2015).

Mainstream philosophy of mathematics does not account for this
fact because, according to it, a demonstration establishes the truth
of a theorem, and this is its function. Then, once the truth of a the-
orem has been established, there is no point in establishing it once
again by another demonstration, let alone by hundreds of them.

Wittgenstein says: “Every proof, even of a proposition which has
already been proved, is a contribution to mathematics”. But “why
is it a contribution if its only point was to prove the proposition?”
(Wittgenstein 1978, 111, § 60). Mainstream philosophy of mathemat-
ics cannot answer this question.

Heuristic philosophy of mathematics aims to remedy the short-
comings of mainstream philosophy of mathematics.

§ 6. — Heuristic Philosophy of Mathematics.

The main characters of heuristic philosophy of mathematics are
the following.

(1) The philosophy of mathematics can concern itself with the
making of mathematics, in particular discovery, because discovery
is an objective process, so it can be accounted for.

(2) The philosophy of mathematics can concern itself also with
finished mathematics. But finished mathematics is never really
finished, because every mathematical concept or hypothesis can
always be called into question, modified, or reinterpreted.

(3) Since the philosophy of mathematics can concern itself with
the making of mathematics, it can possibly contribute to the advance-
ment of mathematics. In fact, from antiquity, the philosophy of
mathematics has repeatedly contributed to it. For example, as
Grabiner says, Berkeley’s attack on the calculus “pointed out real
deficiencies” and indicated “the questions which had to be answered
if a successful foundation were to be given” (Grabiner 2005, 27).

(4) The task of the philosophy of mathematics is primarily to
give an answer to the question: How is mathematics made? And,
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subordinately to it, to the questions: What is the nature of math-
ematical objects, demonstrations, definitions, diagrams, notations,
explanations, beauty, applicability, and knowledge?

(5) The method of mathematics is the analytic method. The
latter is the method according to which, to solve a problem, one
looks for some hypothesis that is a sufficient condition for solv-
ing the problem, namely such that a solution to the problem can
be deduced from the hypothesis. The hypothesis is obtained from
the problem, and possibly other data, by some non-deductive rule.
The hypothesis must be plausible, namely the arguments for the
hypothesis must be stronger than the arguments against it, on the
basis of experience. But the hypothesis is in turn a problem that
must be solved, and is solved in the same way. Namely, one looks
for another hypothesis that is a sufficient condition for solving the
problem posed by the previous hypothesis. The new hypothesis is
obtained from the previous hypothesis, and possibly other data, by
some non-deductive rule, and must be plausible. And so on. Thus,
solving a problem is an ongoing process. The analytic method dates
back to the beginnings of mathematics. Its first documented uses
are the solutions of Hippocrates of Chios to the problems of dou-
bling the cube and the quadrature of certain lunules. For them,
and the analytic method generally, I refer the interested reader to
Cellucci 2022, chap. 5.

(6) The role of demonstration is to discover a plausible solution
to a problem.

(7) Mathematics is a body of problems and plausible solutions
to them. Therefore, mathematics is not about truth and certainty,
but about plausibility.

§ 7. — Origin of Heuristic Philosophy of Mathematics.

The origin of heuristic philosophy of mathematics can be cred-
ited to Lakatos.

Indeed, Lakatos criticizes mainstream philosophy of mathemat-
ics because in it “there is no proper place for methodology qua logic
of discovery” (Lakatos 1976, 3). Mainstream philosophy of mathe-
matics “denies the status of mathematics to most of what has been
commonly understood to be mathematics,” in particular it can say
nothing about “the ‘creative’ periods” and “the ‘critical” periods
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of mathematical theories” (ibid., 2). On the contrary, the philos-
ophy of mathematics must be concerned with methodology qua
logic of discovery. Although there is no infallibilist logic of discov-
ery, namely “one which would infallibly lead to results, there is a
fallibilist logic of discovery” (ibid., 143-144, footnote 2). The lat-
ter consists in “the method of proof and refutations” (ibid., 50).
According to it, a mathematician discovers solution to problems
“by trial and error” (ibid., 73).

Lakatos’s approach, however, has an important shortcoming.
Lakatos assumes that the logic of discovery consists in the method
of proof and refutations, according to which a mathematician dis-
covers solutions to problems by trial and error. The assumption is
untenable, because the number of trials a mathematician can make
is very small with respect to all possible ones, so the probability
that a mathematician may discover solutions to problems by trial
and error is very low. This contrasts with the fact that over 100,000
research papers in mathematics are published every year.

Lakatos himself ends up admitting that the method of proof and
refutations does not provide a basis for methodology qua logic of
discovery. Indeed, he says that “modern methodologies or ‘logics
of discovery” consist merely of a set” of “rules for the appraisal of
ready, articulated theories” (Lakatos 1978, I, 103). These rules do
not “give advice” as to “how to arrive at good theories” (Lakatos
1971, 174). They only give “directions for the appraisal of solutions
already there” (Lakatos 1978, I, 103, footnote 1).

Now, as Nickles says, it “is astonishing” that “Lakatos’s method-
ology provides ways to appraise” solutions already there, “but
stops short of giving advice” (Nickles 1987, 119). For, “the idea of
a heuristic methodology which gives no advice is a contradiction
in terms. Bluntly stated, Lakatos has no methodology” (ibid.,120).

This does not invalidate the claim that the origin of heuristic phi-
losophy of mathematics can be credited to Lakatos. But it means
that, with respect to heuristic philosophy of mathematics, Lakatos
is a sort of ‘non-playing captain’, namely a captain who is not in the
field when the game takes place.

Heuristic philosophy of mathematics, as formulated here, is not
subject to the shortcoming of Lakatos’s approach concerning the
method of proof and refutations. For, it replaces the method of
proof and refutations with the analytic method, in which hypothe-
ses are discovered, not by trial and error, but by non-deductive
inferences.
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§ 8. — Other Objections to Heuristic Philosophy of
Mathematics.

In addition to the objection concerning Lakatos’s method of
proof and refutations, other objections have been raised against
Lakatos. They, however, are invalid. I will consider them because
such objections could also be raised against heuristic philosophy of
mathematics as formulated here, therefore, it is important to show
that they are invalid.

(1) Feferman says: “Lakatos’ fireworks briefly illuminate lim-
ited portions of mathematics,” but only deductive “logic gives
us a coherent picture of mathematics,” it “alone throws light on
what is distinctive about mathematics, its concepts and methods”
(Feferman 1998, 93). The “logical analysis of the structure of math-
ematics has been especially successful,” one can use formal systems
also “to model the growth of mathematics” (ibid., 92).

But this objection is invalid. By the strong incompleteness the-
orem for second-order logic, there is no consistent formal system
for second-order logic capable of deducing all second-order log-
ical consequences of any given set of propositions. Now, much
of mathematics requires second-order logic or beyond. Therefore,
deductive logic cannot be said to give us a coherent picture of
mathematics, nor to throw light on what is distinctive about math-
ematics, its concepts and methods. Moreover, deductive logic is
non-ampliative, so it cannot explain why a demonstration may
yield something new. Therefore, formal systems cannot be used
to model the growth of mathematical knowledge.

(2) Smorynski says: “Lakatos firmly denies the distinction
between mathematics, on the one hand, and the “sciences on the
other,” but “I cannot accept such a denial” (Smorynski 1983, 11).
Mathematics and the sciences are essentially different because, in
the sciences there are revolutions, while mathematics “is a cumula-
tive body of knowledge” (ibid.).

But this objection is invalid. Mathematics is not a cumulative
body of knowledge, there are revolutions also in mathematics. This
depends on the fact that in mathematics we start from problems,
we formulate hypotheses for their solution by non-deductive infer-
ences, and we establish the plausibility of hypotheses through a
comparison with experience.
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Now, for their solution, certain problems require hypotheses
that cannot be deduced from the existing mathematics. Such
hypotheses change mathematics in a profound and far-reaching
way. For example, the problems of the infinitesimal calculus
required hypotheses that could not be deduced from the (then)
existing mathematics. They changed mathematics in a profound
and far-reaching way. Hypotheses that cannot be deduced from the
existing mathematics give rise to revolutions in mathematics. For
more on revolutions in mathematics, I refer the interested reader to
Cellucci 2022, chap. 10.

(3) Mancosu says: “The predominance” of mainstream “approaches
to the philosophy of mathematics in the last twenty years proves”
that “the ‘maverick tradition’,” namely the tradition originating
from Lakatos, “did not manage to bring about a major reorienta-
tion of the field” (Mancosu 2008, 5). Indeed, “logically trained”
mainstream philosophers of mathematics “felt that the ‘mavericks’
were throwing away the baby with the bathwater” (ibid., 5-6).

But this objection is invalid. The ‘baby’ thrown away is the
assumption that mathematical reasoning consists of deductive rea-
soning. This assumption is untenable because it is refuted by
Godel’s first incompleteness theorem. Moreover, the predomi-
nance of mainstream approaches to the philosophy of mathematics
in the last twenty years does not prove that the maverick camp has
failed. As Dewey says, “old ideas give way slowly” because they are
“deeply engrained,” but eventually they are abandoned because of
“their decreasing vitality” (Dewey 1910, 19). Now, there are clear
signs that the ideas of mainstream philosophy of mathematics have
shown a decreasing vitality.

§ 9. — Heuristic Philosophy of Mathematics
and Open Systems.

From the description of the main characteristics of heuristic
philosophy of mathematics given above, it is clear that the basic
assumption of heuristic philosophy of mathematics is that mathe-
matics is problem-solving by the analytic method.

The basic assumption implies that mathematical theories are
open systems. An open system is a system whose development
involves receiving inputs from and delivering outputs to the out-
side. Thus, its development does not remain internal to the system,
so the system is not a self-sufficient totality.
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The basic assumption implies that mathematical theories are
open systems because a mathematical theory initially consists only
of problems to be solved and possibly other data already available.
Its development consists in obtaining more and more hypotheses
to solve the problems by non-deductive rules, and in checking that
the hypotheses are plausible.

Since the hypotheses are obtained by non-deductive rules and
non-deductive rules are ampliative, namely the conclusion con-
tains something essentially new with respect to the premisses, the
hypotheses are not implicitly contained in the problems and the
other data already available. Moreover, the hypotheses need not
belong to the same part of mathematics as the problems. They
may belong to other parts of mathematics. So, the development of
a mathematical theory may involve interactions with other math-
ematical theories.

§ 10. — Heuristic Philosophy of Mathematics and
Godel’s Incompleteness Theorems.

The basic assumption, that mathematics is problem-solving by
the analytic method, is unaffected and even confirmed by Godel’s
incompleteness theorems.

The basic assumption is unaffected and even confirmed by
Godel’s first incompleteness theorem, because the analytic method
does not confine mathematics within the closed space of an
axiomatic system. It lets mathematics develop in an open space,
making use of interactions with other systems of knowledge.
Indeed, in the analytic method, the solution to a problem is
obtained from the problem, and possibly other data already avail-
able, by means of hypotheses not necessarily belonging to the same
part of mathematics as the problem. Now, by Godel’s first incom-
pleteness theorem, for any consistent, sufficiently strong, formal
system, there are propositions of the system that are true but
cannot be deduced from the axioms of the system. So, solving a
problem of a given part of mathematics may require hypotheses
from other parts.

The basic assumption is also unaffected and even confirmed
by Godel’s second incompleteness theorem, because the analytic
method does not assume that the solution to a problem is certain.
Indeed, in the analytic method, the hypotheses for the solution to



12 C. Cellucci Mx® vol. 1

a problem are only plausible, therefore no solution to a problem
can be certain. Now, by Godel’s second incompleteness theorem,
for any consistent, sufficiently strong, formal system, it is impossi-
ble to demonstrate, by absolutely reliable means, that the axioms
of the system are consistent. So, since we cannot know whether
the axioms are consistent, no solution to a problem can be certain.

§ 11. — Other Advantages of Heuristic Philosophy of
Mathematics.

In addition to being unaffected and even confirmed by Godel’s
incompleteness theorems, heuristic philosophy of mathematics
does not have the other shortcomings of mainstream philosophy
of mathematics.

(1) Heuristic philosophy of mathematics accounts for the fact
that solving a problem of a given part of mathematics may require
hypotheses from other parts of mathematics.

For, according to the analytic method, the hypotheses to solve a
problem need not belong to the same part of mathematics as the
problem, they may belong to other parts of mathematics.

(2) Heuristic philosophy of mathematics accounts for the fact
that a demonstration may yield something new.

For, according to the analytic method, the hypotheses for the
solution to a problem are obtained from the problem, and possibly
other data, by some non-deductive rule. So, they contain some-
thing essentially new with respect to them, because non-deductive
rules are ampliative.

(3) Heuristic philosophy of mathematics accounts for the fact
that new solutions, even hundreds of them, are often sought for
problems for which a solution is already known.

For, according to the analytic method, a mathematical problem
can be seen from different perspectives, each of which may sug-
gest different hypotheses that may lead to different solutions to the
problem. Each solution establishes new relations between the prob-
lem and other parts of mathematics, showing the problem in a new
light. Therefore, a new solution to a problem is a contribution to
mathematics.
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§ 12. — Difference from the Philosophy of
Mathematical Practice.

Heuristic philosophy of mathematics must not be confused with
the philosophy of mathematical practice.

In recent years, the philosophy of mathematical practice has
turned into a variety of different approaches, sometimes even in
contrast with each other. Attempts to classify them have been made
(see Van Bendegem 2014, Carter 2019), but they do not reveal a
unity of the different approaches. A unitarian approach results
only from the papers in Mancosu (2008), the first collection of
essays on the philosophy of mathematical practice. Therefore, in
what follows, by ‘the philosophy of mathematical practice” I will
exclusively mean that approach of the papers in Mancosu (2008),
as presented in the Editor’s Introduction.

Mancosu says that the philosophers of mathematical practice
“do not engage in polemic with the foundationalist tradition”
(Mancosu 2008, 18). In particular, they reject “the polemic against
the ambitions of mathematical logic as a canon for philosophy of
mathematics,” and do not consider mathematical logic to be “inef-
fective in dealing with the questions concerning the dynamics of
mathematical discovery” (ibid., 4).

The philosophers of mathematical practice are only “calling for
an extension” of the foundationalist tradition to “topics that the
foundationalist tradition has ignored,” namely topics concerning
“aspects of mathematical practice” (ibid., 18).

That does not mean that the three big foundationalist schools
were “removed from such concerns” (ibid., 6-7). Thus, Frege’s
development of a formal language aimed at capturing all valid
forms of reasoning occurring in mathematics “required a keen
understanding of the reasoning patterns to be found in mathemat-
ical practice” (ibid., 7). Hilbert’s “distinction between real and
ideal elements” also “originates in mathematical practice” (ibid.).
Brouwer’s intuitionism originated “from the distinction between
constructive vs. non-constructive procedures” which was promi-
nent “in algebraic number theory in the late 19th century” (ibid.).
The direct and indirect descendants of the three big foundationalist
schools “are also, to various extents, concerned with certain aspects
of mathematical practice” (ibid.).

However, the three big foundationalist schools and their direct
or indirect descendants “were limited to a central, but ultimately
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narrow, aspect of the variety of activities in which mathematicians
engage” (ibid.). Conversely, the philosophers of mathematical
practice “cover a broad spectrum of case studies arising from math-
ematical practice” (ibid.,18). They extend the investigation “to a
variety of areas that have been, by and large, ignored” but “are abso-
lutely vital to an understanding of mathematics” (ibid.).

This, however, is a difference in quantity, not in quality between
the philosophy of mathematical practice and mainstream philoso-
phy of mathematics, therefore the former is continuous with the
latter. As a result, the philosophy of mathematical practice inherits
all the shortcomings of mainstream philosophy of mathematics.

§ 13. — Different Answers to Basic Questions.

AsThave already said, according to heuristic philosophy of math-
ematics, the task of the philosophy of mathematics is primarily to
give an answer to the question: How is mathematics made? And,
subordinately to it, to the questions: What is the nature of math-
ematical objects, demonstrations, definitions, diagrams, notations,
explanations, beauty, applicability, and knowledge?

Heuristic philosophy of mathematics and mainstream philoso-
phy of mathematics give different answers to these questions. It
would require much space to consider all of them, so I will only
consider two of them, the nature of mathematical objects and the
nature of mathematical definitions, which are strictly related.

§ 14. — Mathematical Objects.

First, I consider the nature of mathematical objects.

Mainstream philosophy of mathematics introduces and justifies
mathematical objects on metaphysical grounds.

For example, Godel introduces and justifies sets by saying that
they belong to “a non-sensual reality, which exists independently
both of the acts and of the dispositions of the human mind” (Gédel
1986-2002, 111, 323). Yet, “despite their remoteness from sense expe-
rience, we do have something like a perception also of the objects
of set theory” (ibid., II, 268). Through it, sets “are known precisely,
and general laws” about them “can be recognized with certainty”
(ibid., 111, 312, footnote 18).
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On the contrary, heuristic philosophy of mathematics does
not introduce and justify mathematical objects on metaphysical
grounds. According to it, mathematical objects are hypotheses
mathematicians introduce to solve mathematical problems by the
analytic method. Like all hypotheses in the analytic method, these
hypotheses must be plausible.

When mathematical objects, introduced as hypotheses to solve a
problem by the analytic method, turn out to be useful also to solve
other problems, they consolidate and acquire a stability that makes
them independent of the problem for which they were originally
introduced, and become subjects of study themselves.

Therefore, according to heuristic philosophy of mathematics,
mathematicians do not accept or reject mathematical objects on
metaphysical grounds, but because they are, or are not, functional
to the advancement of mathematics.

For example, Bombelli introduced imaginary numbers as a means
to solve cubic equations. At first, imaginary numbers encountered
strong resistance. Like Musil’s young Torless, several mathemati-
cians objected that “the square of every number, whether it’s positive
or negative, produces a positive quantity. So there can’t be any real
number that could be the square root of a minus quantity” (Musil
1986, 76). Eventually, however, mathematicians accepted imaginary
numbers, not on metaphysical grounds, but because they were func-
tional to the advancement of mathematics. Thus, Gauss said “If
these imaginary quantities were to be neglected”, the infinitesimal
calculus “would lose immensely in beauty and roundness”, and we
“would be forced to add very hampering restrictions to truths which
otherwise would hold generally” (Gauss 1880, 156).

§ 15. — The Stipulative View of Mathematical
Definition.

Now I consider the nature of mathematical definitions.

According to mainstream philosophy of mathematics, a def-
inition merely stipulates the meaning of a term, it is only an
abbreviation, so it is always correct, and can be eliminated.

This view of definition, which is known as ‘the stipulative view
of definition’, goes back to ancient Greece. Thus, Aristotle says:
“One type of definition will be the statement of what a name”
means, “for example, what triangle means” (Aristotle, Analytica
Posteriora, B 10, 93 b 30-32).
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But Aristotle considers this kind of definition only to criticize it.
Indeed, he argues that, if a definition were simply a statement of
what a name means, this would have the following undesirable
consequences.

(1) “There would be definitions of non-substances and of things
which do not exist, because it is possible to mean also things which
do not exist” (Aristotle, Analytica Posteriora, B7, 92 b 27-30).

(2) “All expressions would be definitions. For, it is possible to
assign a name to any expression whatever, so all our discourses
would be definitions,” for example, the entire poem “Iliad would
be a definition” (ibid., B 7, 92 b 30-32).

(3) “No demonstration could demonstrate that this name makes
known this thing; therefore, definitions could not make known this
thing either” (ibid., B 7, 92 b 32-34).

To the stipulative view of definition, Aristotle opposes the essen-
tialist view of definition, which is based on Aristotle’s fundamental
assumption that “to know a thing is to know its essence,” since “any
single thing and its pure essence coincide” (ibid., Z 6, 1031 b 19-21).
So, the object of science is to know the essence of things. Then, in
particular, “a definition is said to be a statement of the essence of
a thing” (ibid., B 10, 93 b 29).

Then, Galileo replaced Aristotle’s fundamental assumption that
the object of science is to know the essence of things by the fun-
damental assumption that gave rise to modern science: the object
of science is to know phenomenal properties of things, mathemati-
cal in kind. Therefore, “the definitions of mathematicians” do not
state the essence of things, they are only “an imposition of names,
or we might say abbreviations of speech” (Galilei 1968, VIII, 74).
So, they are arbitrary stipulations and, “being arbitrary, can never
be bad” (ibid., IV, 700). Thus, Galileo revived the stipulative view
of definition.

The stipulative view has prevailed in the past century espe-
cially as a result of Hilbert’s replacement of the material axiomatic
method with the formal axiomatic method.

Indeed, according to Hilbert, a “theory has nothing to do with
the real objects and with the intuitive content of knowledge; it is
a pure thought construct, of which one cannot say that is true or
false” (Hilbert 2013, 435). So, “the axioms can be taken quite arbi-
trarily” (Hilbert 2004, 563). And a definition is “a mere explanation
of signs” (Hilbert and Bernays 1968-1970, I, 292). Thus, definitions
are arbitrary stipulations.
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§ 16. — Shortcomings of the Stipulative View of
Mathematical Definition.

Despite its prevailing in the past century, the stipulative view of
mathematical definition has important shortcomings.

(1) The stipulative view does not account for the fact that find-
ing an adequate definition can make the difference in discovering
a solution to a problem.

For example, let us consider the definition of a sphere. There
are two historically important definitions of a sphere, one by Plato,
Aristotle, and Theodosios, the other by Euclid.

Plato, Aristotle, and Theodosios define a sphere as a solid figure
with every point on its surface equidistant from its centre.

For example, Theodosios defines a sphere as “a solid figure con-
tained by one surface, such that all the straight lines falling upon
it from one point among those lying inside the figure are equal to
each other” (Theodosios, Sphaerica, I, Def. 1, ed. Heiberg).

On the contrary, Euclid defines a sphere as a solid figure gener-
ated by a semicircle revolving about its diameter.

Indeed, Euclid defines a sphere as “the figure comprehended
when, the diameter of a semicircle remaining fixed, the semicircle is
carried around and restored again to the same position from which
it began to be moved” (Euclid, Elementa, X1, Definition 14).

On the other hand, while Euclid defines a sphere by referring to
motion, he defines a circle without referring to motion.

Indeed, Euclid defines a circle as “a plane figure contained by
one line, such that all the straight lines falling upon it from one
point among those lying inside the figure are equal to each other”
(Euclid, Elementa, 1, Definition 15).

Why does Euclid define a sphere and a circle in different ways?
This is because Euclid’s definition of a sphere plays an important
heuristic role in Euclid’s solution to the problem about the five
Platonic figures.

Finding a solution to that problem was very important to Euclid
because, as Thomas says, the solution to the problem about the
five Platonic figures is “the culmination of the work” of Euclid’s
Elements “as a whole” (Thomas 2014, 234).

By referring to motion, Euclid’s definition of a sphere guided
him to find a solution. Thus, such definition made the difference
in discovering a solution to the problem. This explains why Euclid
defines a sphere and a circle in different ways.
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This cannot be accounted for, as the stipulative view claims, a
definition is only an abbreviation.

(2) The stipulative view does not account for the fact that mathe-
maticians often use concepts for a long time, even centuries, before
they can find a suitable definition for them.

For example, as Grabiner says, “Fermat implicitly used” the
derivative; “Newton and Leibniz discovered it; Taylor, Euler,
Maclaurin developed it; Lagrange named and characterized it; and
only at the end of this long period of development did Cauchy and
Weierstrass define it” (Grabiner 2010, 159-160). So, “the historical
order of development of the derivative is the reverse of the usual
order of textbook exposition,” in which “one starts with a defini-
tion, then explores some results,” thus “a definition is often the end,
rather than the beginning, of a subject” (ibid., 160).

This cannot be accounted for if, as the stipulative view claims, a
definition is only an abbreviation.

(3) The stipulative view does not account for the fact that math-
ematicians often give definitions that afterwards turn out to be
incorrect.

For example, Jordan defines a curve in a way that corresponds
to the idea that a curve is what is generated if a point runs along
in continuous motion. The motion of the point will be completely
described by stating how the two coordinates x and y of the point
depend on time ¢.

Indeed, Jordan defines a curve as “the succession of points repre-
sented by the equations x = f(t),y = ¢(t), where f, ¢ are functions
of an independent variable t. If these functions are continuous, the
curve will be called continuous” (Jordan 1887, 587).

However, Peano defines something that is a continuous curve
according to Jordan’s definition, but “goes through every point of
a square” (Peano 1973, 144).

Now, a curve is a one-dimensional object, while a square is a two-
dimensional object. Since, on Jordan’s definition, there is a curve
that is a square, then Jordan’s definition of curve or continuous
curve is incorrect.

This cannot be accounted for if, as the stipulative view claims, a
definition is always correct.
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§17. — The Heuristic View of Mathematical Definition.

An alternative view of mathematical definition is the heuristic
view. It derives from the heuristic view of mathematical objects.

Indeed, if mathematical objects are hypotheses human beings
make to solve mathematical problems by the analytic method, then
so are the mathematical definitions that introduce them.

Thus, mathematical definitions are hypotheses that are made
to solve mathematical problems by the analytic method. Like all
hypotheses in the analytic method, such hypotheses must be plau-
sible.

§ 18. — Advantages of the Heuristic View of
Mathematical Definition.

The heuristic view does not have the shortcomings of the stipu-
lative view.

(1) The heuristic view accounts for the fact that finding a suitable
mathematical definition can make the difference in discovering a
solution to a problem.

For, a mathematical definition is a hypothesis, and finding a suit-
able hypothesis is a crucial step towards finding a solution to a
problem.

(2) The heuristic view accounts for the fact that mathematicians
often use concepts for a long time, even centuries, before they can
find a suitable definition for them.

For, finding an adequate definition can make the difference in
discovering a solution to a problem. So, finding an adequate defini-
tion may require as much effort and time as finding any hypothesis
capable of yielding a solution to a problem.

(3) The heuristic view accounts for the fact that mathematicians
often give definitions that afterwards turn out to be incorrect.

For, a mathematical definition is a hypothesis that is plausible,
and a hypothesis that is plausible at one stage may become implau-
sible at a later stage, when the arguments against the hypothesis
become stronger than those for it.

Thus, mathematicians thought that Jordan’s definition of a curve
was plausible, but then Peano gave an argument that made it
implausible.



20 C. Cellucci Mx® vol. 1

§19. — Conclusion.

From what I have said, it seems fair to conclude that heuristic
philosophy of mathematics is more adequate than mainstream phi-
losophy of mathematics.

I have argued for this by considering the nature of mathe-
matical objects and definitions. But I could have argued for it
equally well by considering the nature of mathematical demonstra-
tions, diagrams, notations, explanations, beauty, applicability, and
knowledge. For them, I refer the interested reader to Cellucci 2022,
chap. 10-17.
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