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What is axiomatics?

PAOLA CANTÚ(1)

Abstract. The article investigates axiomatics as a complex
mathematical practice whose inquiry, while taking its
cue from the analysis of some specificmathematical theo-
ries, requires an interdisciplinary approach. Axiomatics,
if analyzed in detail through a study of its foundational
component, of the styles with which it is associated and
of the rules that govern it, performs a plurality of func-
tions. It serves heuristic, descriptive, genetic-historical,
pedagogical and architectural aims. But it can also play
the role of conceptual analysis, modular analysis and
coordination tool, soliciting a quest for rigor. An exam-
ple taken fromPeano’s investigation of axiomatic systems
illustrates the kind of results that this interdisciplinary
approach to mathematical practice might produce, show-
ing what can be achieved by considering axiomatics as
research on the foundations ofmathematics, or as amath-
ematical style, or as a social institution.

§ 1. — Introduction.

What the relation between mathematics and philosophy should
be is a delicate question. Stewart Shapiro has distinguished two dif-
ferent modes of relationship between philosophy andmathematics,
described respectively by the methodological principles philosophy
first and philosophy last-if-at-all: in the first case the philosophical
reasons in favor of a given mathematical ontology determine nor-
matively how mathematics should be done; in the second case

(1)I would like to express thanks to Andrew Haigh, who helped me to improve
the English version.
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philosophy is a mere epiphenomenon that exerts no influence on
the development of mathematics.(2)

The philosophy-oriented approach — to which Shapiro aligns
himself, while insisting on the need to break down unnecessary
walls between philosophy and mathematics and on the desirabil-
ity of considering philosophical normativity defeasible — assumes
that philosophy is an activity carried out exclusively byprofessional
philosophers (who may possibly also be competent in mathemat-
ics) and that it influences mathematics without being in turn
significantly influenced by it. To this approachwe ascribe the inves-
tigations related to the development of the twentieth-century ‘isms’
(logicism, pragmatism, structuralism, etc.), the research related to
the well-known dilemma of Benacerraf on the indispensability of
mathematics, and more generally all the contributions to the prob-
lem of the existence of abstract objects, their cognitive access and
the choice of a first or second order logic.

The practice-oriented approach to mathematics, on the other
hand, is characterized by the idea that the search for solutions to
open problems in mathematics as well as the search for definitions
and arguments are essentially philosophical activities— regardless
of who is in charge of them— that can have repercussions as much
on the development of mathematical theories themselves as on the
transformations of the conceptual tools that philosophy uses. In
the practice-oriented approach we include investigations that show
the intersection of philosophy and history of mathematics, epis-
temological research related to visualization and explanation in
mathematics, investigations of computer-assisted demonstrations,
and analysis of certain properties of mathematical arguments, such
as purity, evidence, and fruitfulness.(3)

(2)See [SHAPIRO 1997, pp. 25ff]. The philosophy-driven and practice-driven dis-
tinction partly traces the opposition drawn by Paolo Mancosu between analytic
philosophy and the maverick tradition, which includes [LAKATOS 1976] and
[CORFIELD 2003]. See [MANCOSU 2008, p. 3].

(3)The practice-driven approach as it is understood here includes, for example,
[LAKATOS 1976] and [CORFIELD 2003], but also the new epistemology ([MANCOSU
2008]), the interactions between philosophy and history ([FERREIRÓS and GRAY
2006]; [KERKOVE, DE VUYST, and BENDEGEM 2010]), recent investigations of argu-
mentation in logic and mathematics ([GABBAY et al. 2002], [ABERDEIN and DOVE
2013]), research on set theory, probability, computability, applications and open
problems in mathematics ([IRVINE 2009, pp. 461ff.] [COLYVAN 2012]). This dis-
tinction intertwines but does not coincide with the distinctions drawn by Cellucci
(2013, pp. 93-96) between static (aimed at the justification of an established body of
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A relevant area of research that requires a back and forth
between philosophy first and philosophy last-if-at-all approaches
is the investigation of axiomatic theories and methods. Philosophy
offers relevant tools for the conceptual analysis, but mathematics
is the starting point since the object of the inquiry are given math-
ematical theories.

§ 2. — What is axiomatics?

‘Axiomatics’ is used in the following as a general term that
stands for an inquiry into axiomatic theories and methods, includ-
ing specific epistemological views and technical solutions, but also
meta-theoretical considerations, and different objectives that the
axiomatic method and theories might serve. Differences might con-
cern also the purposes that the axiomatic method or the axiomatic
formulation of a theory serve in a specific case (section 3). This
paper will list different purposes that the axiomatic formulation of
a theory might serve and illustrate them with an example taken
from the investigation of the Peano School (section 5).

Let us begin with a preliminary conceptual clarification of the
terms ‘axiomatic method’ and ‘axiomatic theory’.

The ‘axiomatic method’ used for the formulation of mathemat-
ical theories comes in many forms, which differ by the language
used: formal, informal or semi-formal. Even when the language is
formal, there are several possibilities of reconstruction, for exam-
ple by using first or second order logic, classical or intuitionistic
logic, etc. Variations in the axiomatic method over time are well
known in the literature, and a radical distinction is generally
drawn between the classical Euclidean method and the modern
hypothetico-deductive method. The former is considered as a
content-oriented approach (inhaltlich), inwhich the axioms are con-
sidered as self-evident truths and the fundamental concepts are
explicitly defined and known by intuition. The latter is presented
as a formal approach, in which the axioms are hypotheses defining
the primitive concepts and their mutual relations.
knowledge) and dynamic (interested rather in the growth of mathematical knowl-
edge) philosophy of mathematics and between top-down (starting from some
general unproven assumption) and bottom-up (starting from the activity of indi-
viduals) approaches. While it shares with the dynamic approach an interest in
inductive arguments alongside deductive ones, it is bottom-up in the sense that it
emerges in the activity of individual mathematicians.
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More recent research has shown that the change in the axioms
chosen to underpin a theory often reflected a profound method-
ological and epistemological change.(4) Besides, the very notions
of axiom and definition changed meaning several times,(5) making
it difficult to compare different axiomatic systems without taking
into account precise historical and conceptual differences.

The notions of logical consequence andmore generally of logical
rule are also closely linked to the axiomaticmethod and have under-
gone profound variations not only in the transition from syllogistic
to twentieth-century symbolic logic (a transition that was by no
means linear, as is still evident in Peano’s school),(6) but also in the
transformation of the role of propositions assumed as primitives
and their relation to theorems. The study of various instances of
axiomaticmethod suggests the existence ofmultiple variantswhich
are in some way intermediate between the classical (Euclidean)
axiomatic method and the modern hypothetico-deductive method.

An ‘axiomatic theory’ is composed of a language, a logical the-
ory — including primitive logical terms, logical axioms and logical
rules of inference — a set of primitive or undefined terms, a set
of statements considered as axioms, a set of defined terms and
a set of theorems that can be derived from axioms by means of
the logical rules of inference (often, specific rules of derivation are
allowed beside the fundamental logical rules). Set theory comes in
a variety of different formulations, which are related to the tech-
nical objective of avoiding paradoxes (e.g., modifications to the
comprehension axioms asmade in type-theory) but also to the epis-
temological objective of offering an adequate account of the infinite.
If the different formulations of set theory reflect different philo-
sophical viewpoints (predicativism, finitism, and so on), one can
find alternative axiomatic formulations of a theory even inside a sin-
gle research group: for example, in the Peano Schoolmanydifferent
formulations have been offered of the theory of natural numbers,
rational numbers, real numbers, complex numbers, vector spaces,
projective geometry, plane and solid geometry.

The same axiomatic theory can be analyzed from a syntactic
point of view as a set of statements, from a semantic point of
view as a set of non-linguistic models that satisfy the statements,

(4)See e.g., [DERISI 2016] on the role played by the parallel postulate in geometry.
(5)See e.g., [CANTÙ 2018] on the deductive role played by definitions in Wolff’s

mathematical method.
(6)[CANTÙ 2022b].
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and finally, from a pragmatic perspective, as a set of examples,
problems, norms, skills and practices. Yet, the general objec-
tive of axiomatics as a philosophical investigation of mathematical
practices is not limited to the axiomatic method and the type of
language and logic used, nor to axiomatic theories understood as
sets of axioms and theorems or as theories composed of language,
semantics, syntax and pragmatics. For example(7), axiomatics also
questions the historical reasonswhy a certainway of conceiving the
method and the axiomatic theories has been privileged in a given
conceptual framework; it questions the role that axioms play in the
foundations of mathematics, in the development of a mathematical
style and in the institutionalization of a given social mathematical
practice. The paper will thus consider three complementary ways
to investigate ‘axiomatics’ as a whole: foundational, stylistic and
institutional (section 4).

The axiomatic treatment of scientific theories was central to
the early twentieth-century philosophy of logic and mathematics
program and was a fundamental feature of the philosophy of sci-
ence until at least logical empiricism. In more recent times, the
general philosophy of science has moved toward less systematic
approaches, which by undermining the unity of science at various
levels have also called into question themethodological unity based
on axiomatization of theories.(8)

This is one possible reason for the lack of a systematic survey
of the role of axiomatics not only in contemporary philosophy of
science, where it seems to have fallen out of favor, but also in the
period from the late nineteenth to the mid-twentieth century. The
temporal distance allows us to observe that in the first half of the
twentieth century many axiomatic methods, styles, and theories
were indeed developed that do not necessarily constitute a unity.
The question is then whether it is possible to speak of axiomatics as
a variegated complex of mathematical research and practices that
can be characterized either on the basis of the commongoal of inves-
tigating the foundations and the unity of science, or on the basis of
some peculiar stylistic features, or even on the basis of some insti-
tutional characteristics.

Having carried out research on the axiomatization of geometry,
extensive magnitudes and arithmetic, I got interested in the study
of various axiomatic approaches to mathematical theories. In the

(7)[SAVAGE 1990] ; [WINTHER 2016].
(8)See e.g., [CARTWRIGHT 1999].
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literature devoted to the history of analytic philosophy, the role of
the axiomatic method is generally associated with the study of the
foundations of mathematics, the philosophical analysis of mathe-
matical principles and rules, the discussion on the possibility of
reducing mathematics to logic, and questions of purity in the rela-
tion between arithmetic and geometry. The objective here is to plea
for a broader vision of what I will call ‘axiomatics’, i.e., a variety of
theoretical inquiries and practical activities related to mathematics
and that present different forms, objectives, and methods. Even lim-
iting attention to the period from the late nineteenth century to the
first half of the twentieth century, the variety of methods, languages,
styles, practices and rules at stake in axiomatized theories is such
that it suggests there is the opportunity for awider and deeper study
of the subject — an approach that is not common in the literature.(9)

§ 3. — The objectives of axiomatics.
To investigate axiomatics one needs to understand the rela-

tion between the different methods and the objectives pursued by
researchers who provide axiomatic formulations of mathematical
theories. In this sectionwewill offer a (non-exhaustive) list of roles
which axiomatics has played.

Heuristics. Axiomatics is useful to formulate new conjectures, to
understand why some hypotheses are more important than others,
to provide new demonstrations, to simplify and speed up proofs,
and to discover errors.

As Hilbert says:
However, as I have already remarked, the present work
is rather a critical investigation of the principles of the
euclidean geometry. In this investigation, we have taken
as a guide the following fundamental principle; viz., to
make the discussion of each question of such a character
as to examine at the same time whether or not it is possi-
ble to answer this question by following out a previously
determined method and by employing certain limited
means. This fundamental rule seems to me to contain
a general law and to conform to the nature of things.(10)

(9)[SCHLIMM 2006, pp. 2–3].
(10)[HILBERT 1902, pp. 130–131].
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Freudenthal as a mathematician considers the heuristic objective
of axiomatics as its main trait, and thus considers the Grundlagen der
Geometrie as the best example of axiomatics, even if he acknowledges
that an earlier formulation can be found in Padoa, and that the elim-
ination of the link with intuition was already stated by Pasch and
Fano (I would also add Bettazzi).(11) The cited example explains
very well why, according to the objective considered as primary in
axiomatics, one author or the other becomes the founding father.
Conceptual Analysis. Axiomatics is also a tool for conceptual anal-
ysis, i.e., a tool for understanding mathematics, and determining
which concepts presuppose which, verifying whether a set of con-
cepts are independent, and distinguishing notions expressed by a
single term but having distinct logical or mathematical functions.
Peano’s ideography, for example, is a form of conceptual analysis(12)
of the definitions occurring inmathematical textbooks. The analysis
takes place in two stages that influence each other. On the one hand,
the analysis of the language and of the structure of proofs allows us
to highlight the primitive logical terms, for example by distinguish-
ing the notions of membership and inclusion, often designated by
the same term (the copula est), or by identifying the primitive logical
rules (e.g., syllogism andmodus ponendo ponens). On the other hand,
the study of the mathematical definitions provided in the textbooks
of analysis and geometry constitutes the starting point of the search
for the fundamental concepts of mathematics and the axiomatic for-
mulation of arithmetic, geometry, the theory of vector spaces, etc.
As Peano and his collaborators clearly acknowledge, a back and
forth between mathematics and logic is induced by the axiomatic
treatment, because the axiomatic formulation of the mathematical
theories induces a modification of the axiomatic formulation of the
logical theory, and in its turn the modification of the latter requires
an adjustment of the formulation of logic:

Ideographic logic, in addition to being the most appro-
priate tool for a non-superficial study of logic, by abol-
ishing any insidious promiscuity of its vocabulary with
that of other sciences which presuppose only logic, like
arithmetic and geometry, has obliged each of these to an
equally diligent revision of their own vocabulary.(13)

(11)See [FREUDENTHAL 1957, p. 153], [PADOA 1901], [PASCH 1884], [FANO 1958] and
[BETTAZZI 1890].
(12)[SCHLIMM 2021].
(13)See [PADOA 1933, pp. 75–77].
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Quest for rigor. Axiomatics serves to eliminate the risk of internal
contradictions in a theory and to eliminate the errors which could
result from an excessive recourse to intuitive ideas, to the assump-
tion of contradictory axioms, the choice of a wrong definition, the
application of an incorrect rule in a derivation, or the making of a
mistake in a proof. The quest for rigor can be expressed in various
ways in mathematics, and it is important to distinguish between
mathematical and philosophical needs. For Peano, although his
position on this point differs significantly from Pieri and Padoa, the
search for rigor is dictated by a conceptual analysis that is intrin-
sic to mathematics and not by the effort to provide a philosophical
foundation for mathematics. For Bolzano, the search for rigor is
associated with the task of providing the right order of presenta-
tion of the concepts and propositions of a scientific theory.(14)

The search for rigor cannot be identified neither with the concep-
tual analysis which allows us to identify the elements of a theory,
nor with the descriptive objective consisting in the production of
an error-free presentation of a theory. Indeed, there are a variety
of methods to increase rigor in mathematics. In Peano’s case, the
method by counterexamples is the most important and is mainly
applied to mathematical definitions, whose inadequacy is shown
by finding examples that satisfy the general definition but should
be excluded, or examples that do not satisfy the definition but
are intuitively taken to fall under the given concept. For example,
Peano criticizes the definition of Peano-Schwartz because it holds
for the length of a curve arc but not for all concave surfaces.(15)

(14)See [BOLZANO 1804] and [CANTÙ 2014].
(15)Serret had defined the length of a curve arc by analogy to the length of a

surface: the former being defined as the common value to the upper bound of
inscribed polygons and the lower bound of circumscribed polygons, the latter was
defined as the limit of an inscribed polyhedric surface. But Serret’s procedure was
flawed, as both Peano and Schwarz acknowledged ([PEANO 1890, p. 55]). Hermite
offered an alternative definition, based on the limit of a series of non contiguous
polygons that are tangent to the surface, but he thus lost the analogy between the
inscribed polygons and the inscribed polyhedric surfaces. Peano in 1890 suggested
a new definition based on the notions of vector and bivector, which respects the
analogy: the length of the curve arc is the superior limit of the sum of the vectors
of its parts; the area of a surface is the superior limit of the sum of the bivectors
of its parts. [PEANO 1890, p. 56]. For an exhaustive analysis of the problem of the
definition of the surface area, see [GANDON and PERRIN 2009].
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Even if we limit ourselves to the logico-philosophical field, it is
worth noting that the search for rigor does not necessarily presup-
pose a formal conception of axiomatics, but is perfectly compatible
with a content-oriented vision, as well as with a positive evaluation
of the role of intuition in mathematics, which is often taken to be
necessary in order to justify the applicability of mathematics.(16)

Descriptive aim. Axiomatics is used to present a theory once it
has already been developed. This objective is often considered by
philosophers as purely accessory, or at least secondary to concep-
tual analysis or search for rigor, which are usually taken as the two
pillars of the axiomaticmethod in the philosophical investigation of
mathematical foundations. However, in the history of logic, long
considered as a general theory of concepts, the primary objective
of the axiomatic method was that of providing a good presenta-
tion of a given topic in a treatise. The right order of concepts was
thus mainly understood as the better way to introduce a topic. For
example, Bolzano defined logic as the art of presenting a theory
in an appropriate textbook (Wissenschaftslehre), which explains the
kind of criticismhemade to the order of the geometrical concepts as
exposed in Euclid’s Elements.(17) Often, various orders of concepts
were considered, and the order of concepts present in the divine
mind (ordo essendi) was contrasted with the order reconstructed by
humans and necessary to their understanding (ordo cognoscendi).
The difficulty of providing an exhaustive list of the fundamental
concepts of a discipline was precisely linked to human finitude, a
theme that we also find in Gödel, for example when he observes
that the paradoxes of set theory are due to a bad choice of the
axioms and not to a problem concerning the existence of sets.(18)

For philosophers of science, the descriptive objective attests to
the value of axiomatics in justification contexts, and explains why
it does not allow new discoveries. Hempel observes for example
that axiomatics, being a ‘device of exposition’ of theories, is used
to compare and justify them, but not to discover new facts.(19) The
descriptive objective is here opposed to the heuristic objective.

(16)See for example [GÖDEL 1953/9, pp. 348–9].
(17)See [BOLZANO 1837], [BOLZANO 1804] and [BOLZANO 1810].
(18)[CROCCO et al. 2020, pp. 48, 73, 86].
(19)[HEMPEL 1970].
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Genetic-historical aim. Axiomatics is sometimes used to compare
different theories, to explain the transformation or the evolution of
a theory into another and possibly the ensuing cognitive progress.
A well-known example is Hilbert’s Grundlagen der Geometrie, in
which the distinction between groups of axioms is also used to
compare different geometrical theories.(20) But I would also like to
mention the case of Giuseppe Veronese, because his axiomatic for-
mulation of infinitesimal geometry was from the beginning linked
to the comparison between the non-Archimedean continuum and
the continuum of Dedekind, and prompted him to write a long
appendix to his book Fondamenti della geometria which constitutes
one of the first examples of the history ofmathematics being deeply
influenced by axiomatics.(21)

Other interesting examples are Peano’s Formulario and Bourbaki’s
Éléments de mathématiques, both of which are extremely attentive to
the axiomatic formulations and their history, explaining the first
occurrence of a certain formula or the evolution of mathematical
ideas.(22)

Architectural aim. Axiomatics can be used to restructure and
better understand the global edifice of a science, which evolves
according to the individual axiomatic theories of which it is com-
posed, and is renewed thanks to new structural analogies allowed
by the development of axiomatics itself (think for instance of the
mother structures in [BOURBAKI 1950] or the disciplinary reorgani-
zation that transformed geometry from a mathematical science to
a physical science in the 19th century).(23)

The reorganization of the architecture of mathematics can also
influence its position in the classification of sciences, a problem that
was crucial at the end of the 19th and the beginning of the 20th
century, because of the multiplication of mathematical disciplines,
including arithmetic, geometry and analysis, but also probabilities,
combinatorics vector spaces and hypercomplex systems, and the
fragmentation of other scientific disciplines, which increased the
number of possible applications.

(20)[HILBERT 1899].
(21)[VERONESE 1891].
(22)See [PEANO 1901], [BOURBAKI 1939-1984] and [DIEUDONNÉ 1978].
(23)[TORRETTI 1978].
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Modular analysis. In some cases, the interest in a mathematical
problem or theorem is not only related to the understanding of the
role it plays in a given axiomatic system. What one wants to study
is the amount of mathematics needed to derive the theorem or to
solve the problem. An example of this is the interest for axiomatics
developed by Hilbert in the Grundlagen der Geometrie, as he investi-
gatedwhat can be proved using only one or some of the five groups
of axioms he isolated (incidence, order, congruence, parallelism
and continuity).(24) This is the objective of reverse mathematics,
to determine which axioms are necessary to prove a certain set of
theorems or which set of theorems or which formal systems isolate
the principles necessary to prove them.(25)

Pedagogical aim. Axiomatics can also be a pedagogical tool, not
only because it allows a clear exposition of theories, but also
because it develops students’ abstraction skills.(26) Asking students
to define a concept or prove a mathematical theorem leads to the
study of several possible definitions and proofs, each based on dis-
tinct notions and rules.(27)

The effort to check that the mathematical content presented by
the teacher is actually accessible to students at a certain level
of study requires a distinction between elementary and non-
elementary parts of a theory, and sometimes suggested alternative
axiomatic formulations of a theory using only the axioms that are
considered to be elementary. For example, Giuseppe Veronese
distinguished an intuitive, experimental and practical method of
teaching, which he considered adequate for young children, from
a rational and rigorous axiomatic method, which he recommended
not to introduce before the age of 14. The geometrical propositions
taught in the two cases are not the same, because material or prac-
tical geometry is limited to the field of the observable: instead of
stating geometric propositions about unlimited lines, he referred
only to line segments, so as to include only propositions that can
be experimentally verified.(28)

The pedagogical objective is often associated with a descriptive
objective, because in the writing of a textbook the right order of

(24)[HILBERT 1899].
(25)[FRIEDMAN 1975, p. 235].
(26)[PIAGET 1968].
(27)[PEANO 1921].
(28)[VERONESE 1909].
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concepts is the one that facilitates understandingwithout requiring
concepts that are foreign to the learners’ field of knowledge. The
problem of purity — i.e., the search for a proof of a theorem that
does not call upon notions foreign to the theory in question— orig-
inated in the philosophical concern to adhere to the Aristotelian
prohibition rule on kind crossing: e.g., one can forbid the use of
arithmetical tools in a geometrical proof or theorems of spherical
geometry in plane geometry. But it also emerged in the didactic
concern of presenting a proof that could also be made by students
fully autonomously.

Coordination tool. If mathematics is considered as a social activ-
ity carried out by actual human agents or multi-agent systems that
find themselves with the practical necessity to regulate their inter-
actions, an axiomatic theory can be used to solve the problems of
coordination.

This problem did not originate neither in the recent tendency of
the philosophy of mathematics to deal with concrete scientific prac-
tices, nor in computer-assisted proofs. Peano already envisaged the
urge to coordinate mathematical activity, as he justified the wish to
build a collection of mathematical formulas by the need of a prac-
tical tool to distinguish what has already been demonstrated from
what is still in need of a proof.(29)

Coordination problems can also be solved through a genetic-
historical approach, which allows us to compare theories devel-
oped at different times and with different tools, and thus also to
understand to what extent a new proof provided with different
techniques can be more or less adequate or general than a pre-
existing proof.

From the perspective of the external history of mathematics,
which focuses on concrete institutions in which mathematical
agents operate (universities, journals, research institutions, schools,
etc.), the objective of coordination becomes essential to understand-
ing the dynamics of collective endeavors, peer review and scientific
controversies.

To the extent that the unification of mathematics or science is
also part of the instruments that promote the coordination of math-
ematical agents, this objective also intersects the architectural goal
mentioned above.

(29)[PEANO 1896].
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§ 4. — Three conceptions of axiomatics in mathematics.
Axiomatics is generally investigated as a method that facili-

tates research on the foundations of mathematics. But recent
developments in historical epistemology and social ontologymight
suggest alternative or complementary viewpoints: axiomatics can
be considered as research on the foundations of mathematics, as a
mathematical style, or as a social institution.

Axiomatics as research on the foundations of mathematics. Axiomatic
systems and methods have often been introduced to deal with
the question of the foundations of mathematics, that is to say, to
determine what the principles of science are, by possibly distin-
guishing the ordo essendi from the ordo cognoscendi, i.e., what is first
in itself from what is first for us. In this classical sense, originated
in Aristotle’s Prior Analytics, axiomatics has an ontological and cog-
nitive scope. Key questions posed by axiomatics are reductionism
(which principles are really independent of each other and which
are those that can be reduced to principles of other disciplines
or to logical principles?) and purity (is it possible to formulate
an axiomatic theory without incorporating principles from other
disciplines or sciences?). Within this general framework, differ-
ent interpretations of the question of foundations (relating, for
example, to rigor and the elimination of errors inmathematical defi-
nitions and proofs, or to the philosophical clarification of the nature
of fundamental elements) and of formal systems as closed or open,
lead to an enormous variety of axiomatic formulations of a theory.

Actually, there might be two distinct ways to approach the founda-
tions of mathematics. By mathematical problem of the foundations, I
mean here the objective to give a rigorous organization to the whole
of mathematics, by providing a precise and unambiguous charac-
terization of its key concepts (e.g., limit and continuity in the case
of analysis).(30) Among the authors who have contributed to the
renewal of mathematics in this sense I include Gauss, Abel, Cauchy,
Bolzano, and in the historical phase of the arithmetization of the analy-
sis,Weierstrass, Cantor andDedekind (but also Kossak,Meray, Heine,
Lipschitz andTannery),who tried to avoid the use of the notion of geo-
metric continuity in the definition of the properties of real numbers.

By logico-philosophical foundation of mathematics, I rather
mean a reflection on the nature of symbolism and abstraction used
in mathematical practices, on the conditions that legitimize their
(30)[MANGIONE and BOZZI 1993, p. 269].
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application and justification.(31) The fundamental question is asso-
ciatedwith a hypothetico-deductive view of axiomatic theories and
to the discussion of alternative philosophical points of view on
mathematics: logicism, intuitionism and formalism.(32)

A similar distinction is made by Leo Horsten: the inquiry is
called foundational research when the mathematicians themselves
are “concerned with the foundations of their subject” and philos-
ophy of mathematics, when “philosophers investigate philosophical
questions concerning mathematics”.(33)

Axiomatics is one of those areas that requires a joint interaction
of the two approaches, so as to avoid philosophy of mathematics
being reduced to a list of ‘isms’ that investigate the nature of mathe-
matical entities or howwe canhave knowledge of them. Axiomatics
(generally a Hilbert-style axiomatics) is often taken to be the gen-
eral framework in which these discussions and analyses are made.
It is seldom questioned in the philosophy of mathematics itself, but
rather delegated to philosophy of logic.(34)

Axiomatics is also a general topic of philosophy of science: a uni-
tarian view, guided by a predominantly ontological interest, is the
ClassicalModel of Science, which presents a list of relevant features
of the method that are considered as still influential in contempo-
rary science.(35) The consideration of the mode of presentation of
a set of propositions and how this architecture might be influential
in forming the epistemic attitude of the reader is seldom discussed,
but this was a central feature of logic in Bolzano andmore generally
in the 19th century. An exception is constituted by researchers who
looked for a joint answer to philosophical and historical questions,
thereby investigating axiomatics both as a cultural phenomenon
and a foundational issue.(36)

(31)[MANGIONE and BOZZI 1993, p. 262].
(32)[SHAPIRO 2005].
(33)See [HORSTEN 2022]. Note that philosophy of mathematics need not be exclu-

sively identified with the investigation on the foundations of mathematics, as has
been argued by philosophers of mathematical practices as well as by historians
of mathematics. I will not enter in the discussion here, but the reader might find
surveys of these approaches in [CARTER 2019; FERREIRÓS and GRAY 2006; GIARDINO
2017; KERKOVE, DE VUYST, and BENDEGEM 2010; MANCOSU 2008].
(34)See e.g., [JACQUETTE 2002]. But note that [QUINE 1970] claimed that axiomatics

does not have an impact on logical theory, because the latter is a set of logical truths,
no matter which are chosen as axioms and which are derived from them.
(35)[JONG and BETTI 2010].
(36)See e.g., [FERREIRÓS and GRAY 2006].
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Axiomatics as a mathematical style. When axiomatics is con-
sidered as a cultural feature that is embodied in a particular
mathematical theory, it is legitimate to wonder whether it could
be described as a style.(37) The term ‘style’ has been introduced in
mathematics by analogywith artistic or literary styles, and has been
brought into the limelight by different traditions. Chevalley, amem-
ber of the Bourbaki group, remarked that axiomatics has deeply
modified the style of contemporary mathematical writings.(38)
Granger developed a general study of style in mathematics, philos-
ophy of language and human sciences.(39)

Crombie gave an ostensive explanation, individuating six funda-
mental styles that characterize the scientific enterprise: postulation
(Greek mathematics), experiment, hypothetical construction of
analogical models, ordering by composition and taxonomy, statis-
tical analysis and probability, and historical derivation of genetic
development. Hacking required two further conditions for the
identification of a new style: novelty and persistence through self-
stabilization. Historical epistemology also insisted on the cultural
features of styles, as results of the activity of a specific school, nation
or tradition.

Paolo Mancosu, comparing the use of the term made in history
of mathematics and in mathematics, distinguished several kinds
of style: individual, methodological, epistemic, national, cultural,
writing, thinking or cognitive style.(40)

Nowhere is axiomatics characterized as a style, even if Crombie’s
characterization of the postulationist style of Greek mathemat-
ics goes in this direction and Chevalley highlighted the relation
between axiomatics and style modifications.

The question here is how to characterize axiomatics as a style.
The term might refer to the writing style of a certain mathemati-
cian, as when one speaks of axiomatics à la Dedekind or à la Peano,
or, as is often done, of Hilbert-style axiomatics. In the latter case,
an individual axiomatic style is also a methodological style orig-
inating in a research tradition: as Chevalley remarks, the ϵ-style

(37)This idea first came to me while reading [MANCOSU 2017], [MARQUIS 2022],
[RABOUIN 2017], and was supported by fruitful discussions with Frédéric Patras
and Sébastien Maronne on Bourbaki.
(38)[CHEVALLEY 1935, p. 375].
(39)[GRANGER 1988].
(40)[MANCOSU 2017].
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was an author’s style that became specific to amathematical era.(41)
The same holds for Buss’s distinction between proof theory in the
Hilbert style, in which each step of a derivation is a formula, and
proof theory in the Gentzen style, in which each step of a deriva-
tion is a sequent.(42)

In another sense, axiomatics can be considered as an element of
a style of thinking, i.e., as a component of a paradigm or as an epis-
temic concept.(43) Axiomatics can still be interpreted as a cognitive
style, be it the structure of human psychological development(44)
or one of the many cognitive styles preferred by agents in teaching
and learning.(45)

In a historical context, it is possible to consider the axiomatic
style as a historiographical or mathematical category — think
of the contrast between the deductive Aristotelian conception of
mathematics, in which axioms are true and self-evident, and the
Hilbertian hypothetico-deductive conception(46) — or as an indi-
vidual style, illustrated for example by Zermelo in the case of set
theory.(47)

The axiomatic style could then give rise to sub-styles. The
distinction between (a) a hypothetico-deductive approach, which
considers a theory as a closed system, (b) a semantic approach,
which sees a theory as a set of models, and (c) an analytical
approach — compatible with the understanding of a theory as an
open system(48) — could be seen as a difference in axiomatic style.

Two other opposite forms of axiomatic style would be content-
oriented axiomatics, which includes Euclid’s geometry, Newton’s
mechanics and Clausius’ thermodynamics, and formal or existen-
tial axiomatics.(49) Similarly, one could compare the style of the
modernists, forwhommathematics has only to dowithwords, with
the style of the anti-modernists, for whom mathematics has to do
with objects.(50)

(41)[CHEVALLEY 1935].
(42)[BUSS 1998].
(43)See respectively [KUHN 1962] and [HACKING 1999].
(44)For [PIAGET 1947] the mental development of the child is associated with the

progressive unraveling of logical-mathematical axioms.
(45)See [BORROMEO FERRI 2005] and [LERMAN 1990].
(46)[KLINE 1990, vol. 3]
(47)See [ZERMELO 1908] and [GRAY 2008, p. 260]. See also [LORENZO 1971].
(48)[CELLUCCI 2017].
(49)See [HILBERT and BERNAYS 1934, p. 2] and [SIEG and RAVAGLIA 2005, p. 987].
(50)See [MEHRTENS 1990] and [GRAY 2008, p. 9].
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Axiomatics as an institution. A thirdway of approaching axiomat-
ics is to consider its persistence in time, although in changing forms,
as a cognitive enterprise realized by human agents to regulate com-
plex interactions. The possibility to distinguish axiomatics as a type
from its instantiations (tokens) based on different methods and dif-
ferent formulations of theories, and the presence of rules, functions
agents and roles, legitimates the question of whether axiomatics
can be considered as a social institution. In social ontology, the
philosophical discipline that studies social institutions and their
components, an institution is characterized by rules, obligations,
coordination problems, agents and roles.(51)

Formal axiomatics could be associated with the following set
of rules: 1) determine the primitive terms of a theory and the
axioms that implicitly define them; 2) make the legitimate rules
of derivation explicit; and 3) specify which rule is applied at
each stage of a proof. In this approach, some of the classi-
cal meta-theoretical problems associated with axiomatics could
be considered as specific obligations. For example, consistency
would be an obligation justified by the fact that it is undesirable
that a statement and its negation are both axioms or theorems
of the same system. Completeness in the Hilbertian (geometri-
cal) sense could be considered as an obligation dictated by the
desire that the axiomatic system has an adequate level of generality.
Agents include human beings, computers andmulti-agent systems.
Roles include researcher, teacher, student, newspaper reporter, etc.
Many coordination problems could be facilitated by axiomatics: a)
avoid proving a theorem that has already been satisfactorily proven;
b) provide a common conceptual framework for comparing differ-
ent proofs of the same theorem and evaluate which one is the most
adequate; c) facilitate the interaction and coordination between dif-
ferent researchers, groups of researchers and research projects in
proving new results or formulating new conjectures; d) facilitate
the unification of fragmented results into an organic unity.(52)

(51)[EPSTEIN 2016; GUALA 2016].
(52)This interpretation of axiomatics as a social institution was the subject of a

presentation at the ENPOSS 2020 international symposium.
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§ 5. — Peano’s example.

Peano developed axiomatics as a tool for the scientific study
of the foundations of mathematics, i.e., for organizing the corpus
of mathematical knowledge and providing a precise and ade-
quate characterization of its key terms. Peano also dealt with the
logico-philosophical foundations of mathematics, especially in his
reflections on the nature of symbolism and abstraction used in
mathematical practice, but without adhering to any form of philo-
sophical foundationalism, since the search for rigor is based neither
on rigid deductivism nor on any form of reductionism.

Peano developed a specific axiomatic style, based on the method
of counterexamples applied to definitions in order to find the
right level of generality (for example, providing a definition of the
length of the curvilinear arc applicable to all concave surfaces), a
style based on the refusal to lean clearly towards an exclusively
extensional or exclusively intensional interpretation of logic and
mathematics, a style based on a particular way of associating
syntax, semantics, and pragmatics through the grammar of lan-
guage.(53)

Finally, Peano institutionalized axiomatics through collaborative
projects: the Formulario, the Dizionario, the Revue des Mathématiques
and the publications of the Academia pro Interlingua. The journals
were the instruments for coordinating the work, but participa-
tion in national and international conferences also provided an
opportunity to invite contributions, critiques, and corrections to
collaborative projects: e.g., the conference held in Livorno in 1901
launched the project for a dictionary of mathematics.

The institutional nature of axiomatics is not only the result of
an intersubjective process, but is also shaped by the way interac-
tions are regulated and certain tasks are assigned to agents. As
can be seen from Enriques’ reading of Peano, axiomatics can be
seen as a set of four rules: 1) all concepts must be taken as prim-
itives or logically derived from primitives; 2) primitive concepts
must be independent; 3) all propositions must be taken as axioms
or derived from axioms; 4) axioms must be independent.(54)

Each of these perspectives on axiomatics (inquiry into founda-
tions, mathematical style, social institution) can be characterized

(53)See [CANTÙ 2022a] and [LUCIANO 2017].
(54)[ENRIQUES 1924–27, pp. 11-12].
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by the study of the objectives it is called upon to fulfill, which, in
Peano’s case, are indeed multiple.

1. Axiomatics is essential to conceptual analysis, understood as
a preliminary operation to the introduction of an ideography.

2. It serves a heuristic objective, facilitating the search for errors
in the definitions, but also the search for new examples and
problems.

3. It induces a quest for rigor, notably elimination of inadequate
definitions and sophisms.

4. It has the descriptive capacity to represent contemporary
mathematical practices.

5. Axiomatics also produces a history of notations and theorems.

6. It allows a comparison of alternative theories on the basis of
criteria of simplicity.

7. It facilitates an architectural organization of mathematical
knowledge.

8. Axiomatics also plays the role of a modular analysis, either of
the theorems derivable from a single axiom, or of the axioms
necessary to derive a given theorem;

9. It also has a didactic objective, aimed at clearly explaining the
theories and developing the students’ abstraction capacities;

10. Finally, axiomatics also plays the role of a coordination tool
allowing mathematicians to quickly discover whether a cer-
tain proposition has already been proved and with what
resources.

§ 6. — Conclusion.

This article has attempted to show how philosophy, even if not
taken as a normative starting point of the inquiry, can contribute
to a reflection on the axiomatic activity of mathematicians. It is
often said that mathematicians do not work axiomatically, and that
this method is mainly concerned with organization rather than sci-
entific discovery. Here we have tried to show that axiomatics, if
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analyzed in detail through a study of its foundational component,
of the styles with which it is associated and of the rules that govern
it, performs a plurality of functions. But this analysis requires an
interdisciplinary approach in which mathematics, philosophy and
history of logic and mathematics are involved: conceptual analy-
sis cannot be dissociated from the punctual study of mathematical
theories and their historical development. The analysis of Peano’s
example offers insight into the kind of results that this interdisci-
plinary approach to mathematical practice might produce.

§ — References.

Aberdein, A. and Dove, I. J., eds. (2013). The Argument of
Mathematics. Springer.

Bettazzi, R. (1890). Teoria delle grandezze. Spoerri.
Bolzano, B. (1804). Betrachtungen über einige Gegenstände der

Elementargeometrie. Barth.
— (1810). Beyträge zu einer begründeteren Darstellung der Mathematik.
— (1837). Wissenschaftslehre. Versuch einer ausfürhlichen und grössen-

theils neuen Darstellung der Logik mit steter Rücksicht auf deren
bisherigen Bearbeiter. Seidel.

Borromeo Ferri, R. (2005). Mathematische Denkstile. Ergebnisse
einer empirische Studie. Franzbecker.

Bourbaki, N. (1950). “The Architecture of Mathematics”. In The
American Mathematical Monthly 57.4, pp. 221–232.

— (1939-1984). Éléments des mathématiques. Hermann then Masson.
Buss, S. R. (1998). “An Introduction to Proof Theory”. InHandbook

of proof theory. Elsevier, pp. 1–78.
CantÙ, P. (2014). “TheRightOrder of Concepts: Grassmann, Peano,

Gödel and the Inheritance of Leibniz’s Universal Characteristic”.
In Philosophia Scientiae - Studies in History and Philosophy of
Science, 18.1, pp. 157–182.

— (2018). “Mathematics. Systematical Concepts”. In Handbuch
Christian Wolff. Springer, pp. 139–152.

— (2022a). Peano’s Philosophy of Mathematics. The Peano School and
the Practice of Axiomatics. Habilitation thesis. École Normale
Supérieure.

— (2022b). “Syllogism and beyond in the Peano School”. In
Aristotle’s Syllogism and the Creation of Modern Logic: Between
Tradition and Innovation. Ed. by L. M. VERBURGT and M. COSCI.
Bloomsbury.



M
×

Φ
vo

l.
1

©
2
0
2
2

M×Φ vol. 1 What is axiomatics? 21

Carter, J. (2019). “Philosophy of Mathematical Practice —
Motivations, Themes and Prospects”. In Philosophia Mathematica
27.1, pp. 1–32.

CartwrigHt, N. (1999). The DappledWorld: A Study of the Boundaries
of Science. Cambridge University Press.

Cellucci, C. (2013). “Top-Down and Bottom-Up Philosophy of
Mathematics”. In Foundations of Science 18.1, pp. 93–106.

— (2017). Rethinking Mathematics. The Heuristic View. Springer.
CHevalley, C. (1935). “Variations du style mathématique”. In

Revue de Métaphysique et de Morale 42.3, pp. 375–384.
Colyvan, M. (2012). An Introduction to the Philosophy of Mathematics.

Cambridge University Press.
Corfield, D. (2003). Towards a Philosophy of Real Mathematics.

Cambridge University Press.
Crocco, G. et al. (2020). Kurt Gödel Maxims and Philosophical

Remarks, Volume IX of the Max Phil Notebooks. https://hal.arc
hives-ouvertes.fr/hal-02892852.

De Risi, V. (2016). “The Development of Euclidean axiomatics”. In
Archive for History of Exact Sciences 70.6, pp. 591–676.

DieudonnÉ, J. A. (1978). Abrégé d’histoire des mathématiques, 1700-
1900. Hermann.

Enriques, F. (1924–27). Questioni riguardanti le matematiche elemen-
tari. Vol. 2. N. Zanichelli.

Epstein, B. (2016). “Social Ontology”. InThe Routledge Companion to
Philosophy of Social Science. Ed. by L.MCINTYRE andA. ROSENBERG.
Routledge, pp. 240–253.

Fano, G. (1958). “Geometrie non euclidee e non archimedee”. In
Enciclopedia delle Matematiche Elementari e Complementi. Ed. by L.
BERZOLARI, G. VIVANTI, and D. GIGLI. Vol. 2. Hoepli, Part 2, pp.
435–51.

FerreirÓs, J. and Gray, J., eds. (2006). The Architecture of Modern
Mathematics. Essays in History and Philosophy. Oxford University
Press.

FreudentHal, H. (1957). “Zur Geschichte der Grundlagen der
Geometrie”. In Nieuw Archief voor Wiskunde 5.3, pp. 105–142.

Friedman, H. (1975). “Some systems of second order arithmetic
and their use”. In Proceedings of the International Congress
of Mathematicians (Vancouver, BC, 1974). Vol. 1. Canadian
Mathematical Congress, pp. 235–242.

Gabbay, D. et al., eds. (2002). Handbook of the Logic of Argument and
Inference. Elsevier.

https://hal.archives-ouvertes.fr/hal-02892852
https://hal.archives-ouvertes.fr/hal-02892852


M
×

Φ
vo

l.
1

©
2
0
2
2

22 P. Cantú M×Φ vol. 1

Gandon, S. and Perrin, Y. (2009). “Le problème de la définition de
l’aire d’une surface gauche: Peano et Lebesgue”. In Archive for
History of Exact Sciences 63.6, pp. 665–704.

Giardino, V. (2017). “The Practical Turn in Philosophy of
Mathematics: A Portrait of a Young Discipline”. In Philosophy
and Mind 12, pp. 18–28.

GÖdel, K. (1953/9). “Is mathematics a syntax of language?” In
Collected Works. III: Unpublished Essays and Lecture. Ed. by S.
FEFERMAN et al. Oxford University Press, pp. 334–356.

Granger, G.-G. (1988). Essai d’une philosophie du style. Odile Jacob.
Gray, J. (2008). Plato’s Ghost: the Modernist Transformation of

Mathematics. Princeton University Press.
Guala, F. (2016). Understanding Institutions. Princeton University

Press.
Hacking, I. (1999). “Historical Meta-Epistemology”. In Wahrheit

und Geschichte. Ed. by W. CARL and L. DASTON. Vandenhoeck &
Ruprecht, pp. 53–77.

Hempel, C. G. (1970). “Formulation and formalization of scientific
theories”. In The Structure of Scientific Theories. Ed. by F. SUPPE.
University of Illinois Press, pp. 244–265.

Hilbert, D. (1899). Grundlagen der Geometrie. Teubner.
— (1902). The Foundations of Geometry. Trans. by E. J. TOWNSEND.

Open Court.
Hilbert, D. and Bernays, P. (1934). Grundlagen der Mathematik.

Vol. 1. Springer.
Horsten, L. (2022). “Philosophy of Mathematics”. In The Stanford

Encyclopedia of Philosophy. Ed. by E. N. ZALTA. Spring 2022.
Metaphysics Research Lab, Stanford University.

Irvine, A. D., ed. (2009). Philosophy of Mathematics. Handbook of the
Philosophy of Science. Elsevier/North-Holland.

Jacquette, D. (2002).ACompanion to Philosophical Logic. JohnWiley
& Sons.

Jong, W. R. de and Betti, A. (2010). “The Classical Model of
Science: A Millennia-Old Model of Scientific Rationality”. In
Synthese 174.2, pp. 185–203.

Kerkove, B. v., De Vuyst, J., and Bendegem, J. P. van (2010).
Philosophical Perspectives on Mathematical Practice. College
Publications.

Kline,M. (1990).Mathematical Thought fromAncient toModern Times.
Vol. 3. Oxford University Press.



M
×

Φ
vo

l.
1

©
2
0
2
2

M×Φ vol. 1 What is axiomatics? 23

KuHn, T. S. (1962). The Structure of Scientific Revolutions. The
University of Chicago Press.

Lakatos, I. (1976). Proofs and Refutations. Ed. by J. WORRALL and E.
ZAHAR. Cambridge University Press.

Lerman, S. (1990). “Alternative perspectives of the nature of math-
ematics and their influence on the teaching of mathematics”. In
British Educational Research Journal 16.1, pp. 53–61.

Lorenzo, J. de (1971). Introducción al estilo matematico. Editorial
Tecnos.

Luciano, E. (2017). “Characterizing a Mathematical School. Oral
Knowledge and Peano’s Formulario”. In Revue d’Histoire des
Mathématiques 23, pp. 1–49.

Mancosu, P. (2008). The Philosophy of Mathematical Practice. Oxford
University Press.

— (2017). “Mathematical Style”. In The Stanford Encyclopedia of
Philosophy. Ed. by E. N. ZALTA. Metaphysics Research Lab,
Stanford University.

Mangione, C. and Bozzi, S. (1993). Storia della logica. Da Boole ai
nostri giorni. Garzanti.

Marquis, J.-P. (2022). “The Structuralist Mathematical Style:
Bourbaki as a Case Study”. In Objects, Structures, and Logics.
Ed. by C. TERNULLO and G. OLIVERI. Springer, pp. 199–231.

MeHrtens, H. (1990). Moderne Sprache, Mathematik: eine Geschichte
des Streits um die Grundlagen der Disziplin und des Subjekts formaler
Systeme. Suhrkamp.

Padoa, A. (1901). “Essai d’un théorie algébrique des nombres
entiers précédé d’une introduction logique à une théorie déduc-
tive quelconque”. In Bibliothèque du Congrès International de
Philosophie. Paris 1900. Vol. 3. Colin, pp. 309–365.

— (1933). “Logica Ideografica”. In Rivista di Filosofia Neo-Scolastica,
pp. 75–90.

PascH, M. (1884). Vorlesungen über die neuere Geometrie. Teubner.
Peano, G. (1890). “Sulla definizione dell’area d’una superficie”. In

Atti della Reale Accademia dei Lincei: Rendiconti (4)6, pp. 54–57.
— (1896). “Introduction au Tome II du Formulaire des

Mathématiques”. In Rivista di Matematica 6, pp. 1–4.
— (1901). Formulaire des mathématiques. Bocca.
— (1921). “Le definizioni in matematica”. In Periodico di

Matematiche 4.1, pp. 175–189.
Piaget, J. (1947). La psychologie de l’intelligence. Armand Colin.
— (1968). Le Structuralisme. PUF.



M
×

Φ
vo

l.
1

©
2
0
2
2

24 P. Cantú M×Φ vol. 1

Quine, W. V. (1970). Philosophy of Logic. 2nd edition 1986. Harvard
University Press.

Rabouin, D. (2017). “Styles in mathematical practice”. In Cultures
without Culturalism: The Making of Scientific Knowledge. Ed. by K.
CHEMLA and E. FOX KELLER. Duke University Press. Chap. 8.

Savage, C. (1990). “Preface”. In Scientific Theories. Minnesota Studies
in the Philosophy of Science. Ed. by C. SAVAGE. Vol. 14. University
of Minnesota Press, pp. vii–ix.

ScHlimm, D. (2006). “Axiomatics and Progress in the Light of
20th Century Philosophy of Science and Mathematics”. In
Foundations of the Formal Sciences IV. Ed. by B. LÖWE, V. PECKHAUS,
and T. RASCH. College Publications, pp. 233–253.

— (2021). “Peano’s dot notation and design principles for nota-
tion”. In The Peano School: Epistemology: Logic, Epistemology and
Didactics. Ed. by P. CANTÙ and E. LUCIANO, pp. 95–126.

SHapiro, S. (1997). Philosophy ofMathematics: Structure andOntology.
Oxford University Press.

— ed. (2005). The Oxford Handbook of Philosophy of Mathematics and
Logic. Oxford University Press.

Sieg,W. andRavaglia,M. (2005). “DavidHilbert and Paul Bernays,
Grundlagen der Mathematik, (1934, 1939)”. In Landmark
Writings in Western Mathematics 1640-1940. Elsevier, pp. 981–
999.

Torretti, R. (1978).Philosophy of Geometry FromRiemann to Poincaré.
Reidel.

Veronese, G. (1891). I fondamenti della geometria. Tipografia del
Seminario.

— (1909). Elementi di geometria intuitiva ad uso delle scuole tecniche.
Drücker.

WintHer, R. G. (2016). “The Structure of Scientific Theories”.
In The Stanford Encyclopedia of Philosophy. Ed. by E. N. ZALTA.
Metaphysics Research Lab, Stanford University.

Zermelo, E. (1908). “Untersuchungen über die Grundlagen der
Mengenlehre I”. In Mathematische Annalen 65.2, pp. 261–281.

Paola Cantú, Aix Marseille Université,
CNRS, Centre Gilles Gaston Granger.

⋆
⋆ ⋆


	1. Introduction
	2. What is axiomatics?
	3. The objectives of axiomatics
	4. Three conceptions of axiomatics in mathematics
	5. Peano's example
	6. Conclusion

