
M
×

Φ
vo

l.
1

©
2
0
2
2

Annals ofMathematics and Philosophy
vol. 1, online version, 19/09/2022 M×Φ

Regards and Insights on the Universe,
an Interviewwith Sir Roger Penrose(1)

JEAN-JACQUES SZCZECINIARZ & JOSEPH KOUNEIHER

Abstract. This paper is the transcript of an interview
with Sir Roger Penrose, which took place on November
15, 2021. The main aim of the paper is to explore with
him the various aspects of his work.(2)

§ 1. — Introduction.

Sir Roger Penrose is a British mathematician and mathematical
physicist who brought an original and exceptional insight to the
philosophy of science and particularly the philosophy ofmathemat-
ics. He has received several prizes and awards, including the 2020
Nobel Prize for his work showing that black hole formation is a
robust prediction of the general theory of relativity and the 1988
Wolf Prize which he shared with Stephen Hawking for “Penrose-
Hawking singularity theorem”. Penrose has made contributions to
the mathematical physics of general relativity and cosmology.
He began his career as a mathematician in the 1950s with a thesis
entitled, “Tensorial methods in algebraic geometry”. He became

(1)Sir Roger Penrose is one of the most accomplished scientists of our time. We
would like to thank him for sharing with us his conception of the world and
his regard on the foundations of mathematics and physics and the contexts of
emergence of his fundamental ideas and breakthrough. We express to him our
gratitude, our admiration and our friendship.

(2)The text of the interview was enriched by complements and figures to illus-
trate the answers and the thought of Roger Penrose. They are taken from the
excellent book The road to reality : a complete guide to the laws of the universe and
others references (see bibliographies). With courtesy of Sir Roger Penrose.
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interested in physics and general relativity and cosmology from the
1960s under the influence of the physicist Dennis W. Sciama who
later became Stephen Hawking’s supervisor.
Penrose introduced original mathematical methods from algebraic
geometry and differential topology to solve the equations of the the-
ory of general relativity and to better understand their predictions
concerning the relativistic theory of stars and cosmology (Roger
Penrose, 1987, 1988). In 1965, he demonstrated that what would
later be called a black hole by John Wheeler is an inevitable conse-
quence of general relativity applied to the gravitational collapse of
a sufficientlymassive star. This theoremdiscovered by Penrose also
implies that the endpoint of the collapse of a black hole star is a sin-
gularity of space (Penrose, Roger, 1965). Penrose also introduced
other geometric methods, in particular, what came to be known
as Penrose-Carter diagrams, which led to important discoveries in
the field of black holes and cosmology (Roger Penrose, 2004). The
calculations made by Hawking to discover his famous quantum
radiation of black holes use such a diagram.
Later, Penrose also developed original geometric ideas for a quan-
tum theory of physics in curved space-time. His theories of
‘twistors’ and spin networks are used today to explore quantum
theories of gravitation (Roger Penrose, 2004, 2018). In recent years,
Penrose has also proposed and defended a new cosmology, known
as Conformal Cyclic Cosmology, as an alternative to the theory
of inflation, which he doubts. Penrose manifests the same doubt
regarding the theory of superstrings (Roger Penrose, 2010, 2012).
We also owe Penrose, with the complicity of his father, and from
the age of 16, some flat paradoxical representations of 3D objects
that inspired the Dutch artist Maurits Cornelis Escher who evokes
the now-famous ‘Tribar’ or Penrose triangle(3) in some of his works.
Penrose’s interest in geometry and puzzles also led to the discov-
ery of a new type of mathematical tiling of the plane that was
thought to be impossible and which would have very concrete
applications many years later with the discovery of quasicrystals
(Paul Steinhardt, 1996).
In this interview, we would like to look at the origins and the
conceptual and philosophical foundations of certain aspects of Sir

(3)Which characterize Sir Penrose is his capability and uniquely visual way of
experiencing mathematics. Penrose can obviously hack the equations, but he also
has to see them, and he is astonishingly resourceful at coming up with visualisa-
tions.
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Roger Penrose’s work and his insights into the foundations of math-
ematics and physics. Roger Penrose can legitimately be considered
one of the true successors of Newton.

§ 2. — Foundations.

JJS & JK: Repeatedly you said that if you have a choice, your uni-
verse would have to be mathematical, and you expressed the hope
that the complex numbers would underlie the actual universe. Do
you think it is essential for understanding physics?
Roger Penrose: Well, that’s an interesting question. The power
and the beauty of complex numbers was something I learnt in
mathematics when I did my degree in mathematics, both pure and
applied Mathematics, so it was specifically mathematics. I was
more attracted to pure mathematics than physics. In particular,
there was a course on complex analysis and I did find complex
analysis particularly amazing

⌈
in the sense that it would be able

to take advantage of what I had regarded, ever since my days as
a mathematics undergraduate, as the ‘magic’ of complex analysis
and holomorphic (i.e. complex analytic) geometry.
I had learnt that the complex number system had not only a pro-
foundly deep power and elegance, but that it had also found a basic
realization in its underlying role in the formalism of quantum the-
ory. When I had begun to study quantum mechanics in a serious
way, and particularly following the superb course of lectures given
by Paul Dirac when I was a graduate student (in algebraic geome-
try) at Cambridge, I became fascinated by the quantum description
of spin, and how the complex numbers of quantummechanicswere
directly related to the 3-dimensionality of physical space, via the
2-sphere of spatial directions being appropriately identified as a
Riemann (or Bloch) sphere of the ratios of pairs of complex num-
bers (quantum amplitudes) where, in the case of a massive particle
of spin such as an electron (see Figure 1), we can think of these as
being the complex components of a 2-spinor. Moreover, I had real-
ized that in the relativistic context, there was another role for the
Riemann sphere, this time as the celestial sphere that an astronaut
in space would observe. The transformation of this celestial sphere
to that of a second astronaut, moving at a relativistic speed while
passing nearby the first would be one that preserves the complex
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structure of the Riemann sphere (i.e. conformalwithout reflection).
The special (i.e. non-reflective) Lorentz group is thus seen to be
identical with these holomorphic transformations of this Riemann
sphere (Mobius transformations). Again, this was clear from the
2-spinor formalism, this time in the relativistic context.

⌉(4)
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smoothness and then you can also expand things in power series. This was such an amazing 
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Figure 1. — The Riemann sphere (here in its role as a Bloch sphere)
projects stereographically from its south pole S to the complex (Wessel)
plane, whose unit circle coincides with the equator of the sphere. A gen-
eral spin state | ↗⟩ = w| ↑⟩ + z| ↗⟩, of a spin-1/2 massive particle is
represented by the point Z on the Wessel plane denoting the complex
number u = z/w, which is the stereographic image of Z′ on the sphere
(so S, Z, and Z′ are collinear). The spin direction ↗ is then OZ, where O
is the sphere’s center.

JJS & JK: So, the use of complex numbers starts with quantum
mechanics and the use of spinors in quantum mechanics and
2-spinors in general relativity, then twistors.
RP: The twistors came later, that’s right yes.
I knew nothing about quantum mechanics then. Still, I had a view
at that time that I should explain: wouldn’t it be wonderful if the
physical world was dependent on complex numbers’
You first learn about real analysis and you learn about functions
and how they can be smooth. You can differentiate them once,
twice or three times and maybe not more. And you have different
kinds of functions with different degrees of smoothness, it’s very
complicated. And when I learnt about complex analysis, it was all

(4)Twistor theory as an approach to fundamental physics, pp. 255–256.
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the same. There’s only one degree of smoothness and then you
can also expand things in power series. This was such an amazing
thing to me.
I just knew about Newtonian mechanics and dynamics and things
like that, and I had no feelings for quantummechanics. Andwhen I
learned about quantum mechanics, I saw all the complex numbers
are there! Particularly in relation to spin. I think what I found the
most attractive was how the notion of spin makes use of complex
analysis. It’s a thing that sort of fell into place. It was certainly a
big feeling.
I didn’t start to learn physics in a serious way. Well, we did have a
part ofmathematics, I learnt about things like Lagrange’s equations.
I knew something about the general framework of physics at the
time. I was in London when I did my mathematics degree and I
went to Cambridge to study algebraic geometry.
So, this is again just pure mathematics. But I got to know Denis
Sciama and the cosmologists there and I went to their lectures.
Therewere three lectures courses that werewaymuchmore influen-
tial than the courses I was supposed to be doing. One was a course
on mathematical logic and I learned about Gödel’s theorem and
computation and that was important for me. I went to a course by
Hermann Bondi, a wonderful course on general relativity which I
got a genuine feeling for the subject. I think that coursewas an amaz-
ing course for me and important in later life. And the third course
was a course, as I said before, by Dirac on quantum mechanics.
And I certainly found the subject extremely beautiful and puzzling
at the same time. And I remember his first lecture, in which he
described that if you had a proton, it could be in two places: it could
be here, it could be here and it could be here and here at the same
time. Then he talked about a piece of chalk, and could it be here
and here at the same time.
I think he broke it into parts to illustrate this, and my mind wan-
dered. I remember I was looking out of the window thinking about
something completely different and when my attention came back,
he had moved on to the next topic and I was left puzzled by how
pieces of chalkwere never found in two places at once. It’s probably
fortunate that I didn’t hear the explanation because it was probably
an explanation to stop your worrying about the problem.
I don’t know what he said, but it was probably something about
energy and howmuch energy itwill cost or something like that. I’m
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glad I didn’t hear it because it might have stopped me from worry-
ing about that problem. But I worried about it ever since which is
also very important in my later work. So, I gave Dirac credit also
for that.
Well, the other thing which was very important later on was when
I was a graduate student and I had a year after I got my Ph.D. in
algebraic geometry, I played around with general tensor systems.
It wasn’t particularly what I was supposed to be doing but never
mind. And then I went for one year, I taught a course and again
it was pure mathematics at Bedford College in London in Regents
Park. It’s a very beautiful area in the middle of the park. But then,
I got a fellowship at Saint John’s College Cambridge on the basis
of my fellowship thesis which was actually in pure mathematics,
as a matter of fact. But then, when I got to Cambridge, I decided
that I would pay more attention to physics. Largely because of the
influence ofDennis Sciama, whowas a great friend ofmine. Hewas
a friend of my brother initially and I had an interest in cosmology
which I picked up from hearing Fred Hoyle’s radio talks about the
steady-state model. And I found it very puzzling. Dennis himself
was very enthusiastic about the merits of steady-state model, and
that is probably what got me involved.
And I remember talking to Dennis Sciama on a visit I made to
Cambridge and he decided to try to convert me to physics. He
didn’t succeed in converting me to physics in the sense of chang-
ing my subject which is what he wanted me to do. But he did in
the sense of teaching me, an awful lot of physics. And we used to
go on trips. He would drive in his car to Stratford where we would
watch Shakespeare plays. Dennis was very keen on Shakespeare
and that sort of thing and I got a lot out of that. Sometimes, he
used to describe to me his idea about Mach’s principle, and when
he would drive very fast in his car around steep and curves and
when you get thrown to the side of the car, he would say that’s the
action of the fixed stars you see. Very good at getting himself free
of any blame!
But anyway, this was very useful to me to get to these general ideas
about physics and it was also useful because he knew people. He
was a very good mixer. He talked to anybody on the physics side.
He was also Dirac’s only graduate student which was interesting,
and I think it was important. I went to the second part of Dirac lec-
ture which was on quantum field theory. The first course was on
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quantum mechanics. That was basic. And at one point, he devi-
ated from his normal course to talk about two components spinors,
which was very mysterious, because I was told later by somebody
whowas interested in Dirac’s, I think it wasGraham Farmelo, he said
to me it’s very unusual for Dirac to deviate from his normal course.
And he did, he deviated to talk about two components spinors and
I think this was very strange because I had been talking to Dennis
Sciama about those spinors. I found two components spinors very
confusing. I tried to learn them from a book he’d recommended
which was by a man called Corson which was almost unreadable.
Dirac gave two or three courses on two spinors and it made it com-
pletely clear to me. He just put the key points and I just understood
them. This was important for me.
Later on, I think I was in my second year as a research fellow, and
Dennis again persuaded me to go to a lecture by David Finkelstein,
about the coordinates, how you get through what we thought to
be a singularity and you learn it’s not a singularity it’s just what
we call a horizon now. And Finkelstein’s lecture was very clear
on this. I remember being very struck by the fact that what used
to be thought to be a singularity at the Schwarzschild radius was
not a singularity. Yet you still have the singularity in the middle
and so you seem to have a problem. I wonder is it possible that
there’s a theorem that shows that you cannot get away from hav-
ing a singularity somewhere. And I thought, well I wonder how
you could prove such a theorem knowing nothing, almost nothing,
about general relativity.
But then, I thought what do I know that perhaps most people
working in general relativity don’t know’ Aaah, two components
spinors! So, I decided to write general relativity in terms of two
components spinors. And it worked beautifully particularly under-
standing the conformal curvature, which was the Weyl curvature,
and it made it completely clear in a way that if I had not looked at
two component spinors, I would not have got that understanding.
It was very important for me that I had these insights into two
component spinors from Dirac. And the puzzle I had about them
initially, about what could it be, it was taking the square root of a
vector: how can you take a square root of a vector?
It didn’t make any sense to me, and then I understood how this
worked and how when you use the two component spinors, it
makes the Weyl curvature so simple. When you write it into ten-
sors, it’s very complicated and you can’t see what’s going on. But
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with two spinors it becomes very simple and very beautiful and
this was my route. It took a long time before the singularity the-
orem. That was several years later because it was in 1958, I think,
when the Finkelstein lecture happened, and it was in early 1964 that
I had the insight into the theorem.
JJS & JK: So, in the beginning, the idea of 2-spinor attracted you
the most?
RP :

⌈
I liked to think of a 2-spinor (often referred to by physicists as

a ‘Weyl spinor’) in a very geometrical way, and I realized that, up to
an overall sign, a non-zero 2-spinor can be represented as a future-
pointing null vector(5), referred to as the ‘flagpole’, together with a
‘flagplane’ direction through that flagpole. The flagplanewould be
a null half-plane bounded by the flagpole. This flag geometry can
be thought of in the followingway. Imagine the Riemann sphere S
of null (i.e. light like) directions at some point O in space-time (see
Figure 2.) We are thinking of the geometry in the tangent 4-space
of the point O. The flagpole direction is represented by some point
P on a sphere of cross-section of the future null cone of O, which
we identify with S , and we choose a point P′ on S infinitesimally
separated from P. The straight line extended out from P in the direc-
tion of P′, when joined to O, defines the required flag half-plane.
We note that as the point P′ rotates about P, the flag plane rotates
about the flagpole. The spinor itself is defined only up to sign by
this geometry, but we must take note that if P’ rotates continuously
around P through 2π, the spinor becomes replaced by its negative.
To reach the original 2-spinor by this procedure, the rotation of the
flag plane would have to be through 4π.

(5)A vector pointing along the future null cone.
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(a) (b)

P

O

P

F

Figure 2. — (a) The space of null directions at some space-time point
O is represented as a Riemann 2-sphere S. The flagpole direction of a 2-
spinor is represented, on S, as the point P. Infinitesimally near to P is P′,
where the direction P⃗P′ provides the 2-spinor’s flag plane. (b) In space-
time terms, the 2-spinor’s flagpole is shown as the null 4-vector O⃗F, where
we realize S as a particular 3-plane intersection of the future null cone of
O (all this taken in O’s tangent 4-space), so that P lies on the line OF. The
2-spinor’s flag plane is now seen as the null half-2-plane extending away
from the line OF in the direction of P′.

I had found that 2-spinor methods were surprisingly valuable in
giving us insights into the formalism of general relativity that were
different from those that the standard Lorentzian tensor frame-
work readily provides. Most immediately striking was the very
simple-looking 2-spinor expression forWeyl’s conformal curvature.
Whereas the usual Weyl-tensor quantity Cabcd, has a somewhat
complicated collection of symmetry and trace-free conditions, the
corresponding 2-spinor is simply a totally symmetric complex 2-
spinor quantity ΨABCD.
[...] I had become interested in the issue of finding solutions of the
general equation

∇AA′
ϕABC...E = 0

in (conformally) flat space-time, ϕABC...E being symmetric in its
n spinor indices, the equation being the (conformally invariant)
free-field equation for a massless field of spin n/2. This equation
(together with the wave equation in suitably conformally invariant
form) had a particular importance forme, and I believed it to have a
rather basic status in relativistic physics. For I had come to the view
that nature might have a ‘massless’ structure at its roots, mass itself
being a secondary phenomenon. In around 1961, I had found a for-
mula for obtaining the solution of this field equation from general
data freely specified on a null initial hypersurface. I had formed
the view that this formula had a certain kinship with the Cauchy
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integral formula for obtaining the value of a holomorphic function
at some point of the complex plane in terms of the function’s val-
ues along a closed contour surrounding that point. I had felt that,
in some sense, this massless field equation might be akin to the
Cauchy-Riemann equations. There had to be an unusual ‘complex’
way of looking at Minkowski space, I had surmised, in which the
massless field equations were simply a statement of holomorphicity
— but in what sense could this be true?
There was one remaining feature that I felt sure must be repre-
sented, as part of this mysterious ‘complex’ way of looking at
space-tine. This arose from a discussion that I had with Engelbert
Schücking when I shared an office with him in the spring of 1961 at
Syracuse University in New York State. Engelbert had persuaded
me of the key importance of the quantum field theory of the split-
ting of field amplitudes into positive and negative frequency parts.
I was not happywith the standard procedure of first resolving these
amplitudes into Fourier components and then selecting the positive
ones, as not only did this strike me as too ‘top-heavy’, but also the
Fourier analysis is not conformally invariant — and I had come to
believe that this conformal invariance, being a feature of massless
fields, was important (again, something that had been stressed to
me by Engelbert).
I had become aware that for complex functions defined on a line
(thought of as the timeline) we may understand their splitting into
positive — and negative — frequency parts in the following way.
We view this timeline as being the equator of real numbers in a
Riemann sphere which, as before, is the complex plane compact-
ified by the single point labelled by ‘∞’, but where the sphere is
nowbeing oriented somewhat differently from that of figure 2, with
the real numbers now featuring as the equator (increasing as we
proceed in an anti-clockwise sense un the horizontal plane), rather
than the unit circle. Functions defined on this equatorial circle that
extend holomorphically into the southern hemisphere (with usual
conventions) are the functions of positive frequency, and those
which extend holomorphically into the northern hemisphere are
those of negative frequency [see Figure 3].
An arbitrary complex function defined on this circle can be split
into a function extending globally into the southern hemisphere
and one globally into the northern hemisphere’uniquely except for
an ambiguity with regard to the constant part’and this provides us
with the required positive/negative frequency split, without any
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resort to Fourier analysis. I wanted to extend this picture into some-
thing more global, with regard to space-time, and I had in mind
that my sought-for ‘complex’ way of looking at Minkowski space
should exhibit something strongly analogous to this division into
two halves, where the boundary between the two could be inter-
preted in ‘real’ terms, in some direct way. This had then set the
stage for the emergence of twistor theory!

⌉(6)
JJS & JK: You mean that your reflection was motivated first by the
idea of splitting.
RP: Yes, I remember the occasion very well because it was shortly
after the assassination of Kennedy, and I was in Austin, Texas.
It was a very traumatic occasion. I was there at the time with
Engelbert Schücking, Rainer Sachs andRoyKerr. So, we had a good
number of people working on relativity theory there. Engelbert
was in charge of the group, I think particularly. In Dallas was
Ivor Robinson whom I knew very well and Wolfgang Rindler with
whom I wrote my book on spinors later on. So, we were very close.
And they were actually at the dinner that Kennedy was going to,
and they kept wondering why he is not here. He has not come yet
and this is because he had been assassinated. And I remember sit-
ting in my office in Austin and I was there and the next-door office,
I think it was Roy Kerr’s office. And the phone rang and rang and
rang and then had to get off. And in the next office, the phone rang
and rang and rang right and then the next office it rang and rang
and then somebody picked the phone up. And I saw Ray Sachs
coming out and he was white as a sheet. And so, I phoned my wife
and I knew the awful news.

(6)Twistor theory as an approach to fundamental physics, pp. 256–260.
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It was several days later when as a way of kind of recovering our-
selves. The Dallas people and the Austin people decided to have
a holiday to try and recover. And so, they drove in several cars to
San Antonio, and we went to the sea.
On theway back, the ladies all wanted to talk, and they hadwanted
to come in their cars and I was in the car with pista Oszvath(7) ,
who hardly spoke at all. He’s Hungarian. He speaks English but
not much, so I came back almost in silence in the car. And I was
able to think about Ivor Robinson’s construction of null solutions
of the Maxwell equations.⌈

IvorRobinson,whohad takenup aposition atwhat later became
theUniversity of Texas atDallas, had beenworking onfinding global
non-singular null(8) solutions of Maxwell’s free-field equations in
Minkowski space-time, where ‘null’ in this context means that the
invariants of the field tensor Fab vanish, i.e. FabFab = 0 = ∗FabFab

where ∗Fab is the Hodge dual of Fab. Equivalently, in 2-spinor terms,
ϕABϕAB = 0, which tells us that

ϕAB = κAκB,

for some κA. It is not hard to show that theMaxwell equations then
imply that the flagpole direction of κA points along a 3-parameter
family — a congruence— of null straight lines, which turn out to be
what is called ‘shear-free’, whichmeans that although the linesmay
diverge, converge, or rotate, locally, there is no shear (or distortion)
as we follow along with the lines.
[...] I became highly intrigued by the geometry of general Robinson
congruences, and I soon realized that one could describe them
in the following way. Consider an arbitrary spacelike 3-plane E
in Minkowski 4-space M. E will have the geometry of ordinary
Euclidean 3-space, and each ray of the congruence will meet E in
a single point, at which we can determine the location of that ray
within M by specifying a unit 3-vector n at that point, pointing in
the spatial direction that is the orthogonal projection into E of the
null direction of L there. Thus, we have a vector field of n’s within
E to represent the Robinson congruence. After some thought I real-
ized what the nature of this vector field must be. The n-vectors are
tangents to the oriented circles (together with one oriented straight

(7)His name is Istvan Ozsváth known to his friends as Pista.
(8)In the Maxwell field you have two null directions which are the directions

along the light cone that the Maxwell field determines and when they coincide
this is what’s called null.
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line) obtained by stereographic projection of a family of Clifford
parallels on a 3-sphere. See Figure 4 for a picture of this configura-
tion, and reference (Roger Penrose, 1986) for a detailed derivation.
The large arrow at the top right indicates the direction in which the
configuration appears to move with the speed of light by continu-
ally reassembling itself in that direction, as E evolves into the future.

 9 

 

 
Figure 4: 
A picture representing a non-null twistor: stereographic projection of Clifford parallels on a 3-sphere to Euclidean 3-space E. The tangent 
directions to the circles point in the direction (projected into E) of the rays of a Robinson congruence. By continuingly reassembling itself the 
entire configuration travels with the speed of light, as E evolves in time, in the direction of the large arrow at the top right. 

 
 

By examining this configuration and counting the number of degrees of freedom that such 
configurations have, I realized that the space of Robinson congruences must be 6-dimensional. 
Moreover, it was reasonably clear to me that by its very mode of construction, this space ought 
to have a complex structure, and so must be, in a natural way, a complex 3-manifold. Within 
this space would lie the space of special Robinson congruences, each of which would be 
determined by a single ray (namely L). The space of rays in ( is 5-real-dimensional, and it 
divides the space of general Robinson congruences into two halves, namely those with a right-
handed twist and those with a left-handed twist. The complex 3-space of Robinson congruences, 
which came to be known as “projective twistor space” appeared to be just what I believed was 
needed, where the “real” part of the space (representing light rays in (, or their limits at 
infinity) would, like the “real” equator of the Riemann sphere described before (figure 3), divide 
the entire space into two halves. This indeed appeared to be exactly the kind of thing that I was 
looking for! 
 
Let me say it differently, Ivor wanted to find solutions that were non-singular everywhere and 
he had discovered these solutions which twisted around in a complicated way. And I was trying 
to understand this. And I think I realized that these were Clifford parallels. This is the three 
sphere and they were the circles on three spheres linking each other. But, you see when you 
take a light ray and you somehow push it into the complex instead of having all the light rays 
meeting a light ray, so you have these twisting congruences. So, I thought, well what is the 
dimensionality of these Clifford parallel configurations and I counted the dimensionality. And 
I realized it was six. One less than the dimensionality of light rays. So, if the light rays represent 
the real points and the Robinson twisting congruences represent the complex points in a sense, 
you add one dimension. And they can twist right-handed or left-handed, so you have a space 
which is divided into two halves. And the real parts, you see directly is the light rays and these 
twistors as I call them were these twisted in the complex part. So, I realized this was what I was 
looking for.  But it took me a long time to realize. I first had to see how Maxwell’s equations 
do, how the massless equations do. And I had, first of all, a way of doing it which is 
complicated. But, then I realized you could use quantum integrals to see how to split them into 
positive and negative frequencies.  And it was not until I talked to Michael Atiyah and 
understood that it's cohomology. And the first cohomology splits into two halves positive and 
negative frequency and it did exactly what I was looking for. That took about three or four or 
five years, I can't remember.  I was still stuck for a long time because this is only special 
relativity and all the people I was working with, were working on general relativity. What's the 
point?  
 

Figure 4. — A picture representing a non-null twistor: stereo-
graphic projection of Clifford parallels on a 3-sphere to Euclidean
3-space E. The tangent directions to the circles point in the direction
(projected into E) of the rays of a Robinson congruence. By contin-
uingly reassembling itself the entire configuration travels with the
speed of light, as E evolves in time, in the direction of the large
arrow at the top right.

By examining this configuration and counting the number of degrees
of freedom that such configurations have, I realized that the space of
Robinson congruences must be 6-dimensional. Moreover, it was
reasonably clear to me that by its very mode of construction, this
space ought to have a complex structure, and so must be, in a nat-
ural way, a complex 3-manifold. Within this space would lie the
space of special Robinson congruences, each of which would be
determined by a single ray (namely L). The space of rays in M

is 5-real-dimensional, and it divides the space of general Robinson
congruences into two halves, namely those with a right-handed
twist and those with a left-handed twist. The complex 3-space
of Robinson congruences, which came to be known as ‘projective
twistor space’ appeared to be just what I believed was needed,
where the ‘real’ part of the space (representing light rays in M, or
their limits at infinity) would, like the ‘real’ equator of the Riemann
sphere described before (Figure 3), divide the entire space into two
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halves. This indeed appeared to be exactly the kind of thing that I
was looking for!

⌉(9)
Let me say it differently, Ivor wanted to find solutions that were
non-singular everywhere and he had discovered these solutions
which twisted around in a complicated way. And I was trying to
understand this. And I think I realized that these were Clifford
parallels. This is the three sphere and they were the circles on
three spheres linking each other. But, you see when you take a
light ray and you somehow push it into the complex instead of
having all the light rays meeting a light ray, so you have these twist-
ing congruences. So, I thought, well what is the dimensionality of
these Clifford parallel configurations and I counted the dimension-
ality. And I realized it was six. One less than the dimensionality
of light rays. So, if the light rays represent the real points and the
Robinson twisting congruences represent the complex points in a
sense, you add one dimension. And they can twist right-handed or
left-handed, so you have a space which is divided into two halves.
And the real parts, you see directly is the light rays and these
twistors as I call them were these twisted in the complex part. So,
I realized this was what I was looking for. But it took me a long
time to realize. I first had to see how Maxwell’s equations do, how
the massless equations do. And I had, first of all, a way of doing
it which is complicated. But, then I realized you could use quan-
tum integrals to see how to split them into positive and negative
frequencies. And it was not until I talked to Michael Atiyah and
understood that it’s cohomology. And the first cohomology splits
into two halves positive and negative frequency and it did exactly
what I was looking for. That took about three or four or five years,
I can’t remember. I was still stuck for a long time because this is
only special relativity and all the people I was working with, were
working on general relativity. What’s the point?
Engelbert and Roy Kerr understood it, in a certain sense. It was
very strange; the idea of the twistors became clear to me the next
day after I returned. I heard Roy Kerr explaining something to Ray
Sachs, and theywere getting very excited. I came into the next office
which was Roy Kerr’s office and said what on earth is this, what are
you talking about’ AndRoywas saying Iwill explainwhat it is. Roy
said, ‘I have this way of generating all the sheer free twisting con-
gruences’. These were the things that Robinson had found a special

(9)Twistor theory as an approach to fundamental physics, pp. 260–262.
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one. Roy said he can find the general ones. And I asked well what
are they ? He wrote down these formulae and said well you find
an analytic function of these particular combinations of coordinates.
I looked at them and I thought my god those are twistors.
So, his theorem was taken as an arbitrary holomorphic function
in twisted space and this gives you a general twisting congruence,
sheer free congruence. So that was the first application of twisted
theory, the very next day. Just that is the coincidence.
JJS & JK: In the approach based on complex structures and more
specifically holomorphy, we reason in terms of neighbourhood and
not in terms of points. Thus, we can say that the holomorphic phi-
losophy induces a new nonlocality in quantum mechanics, where
the complex topology will be the fundamental structure. Do you
agree with this?
RP: Yes, that’s right. Yes, that certainly was a strong motivation.
Holomorphic was a very strong motivation. I mean there is a non-
linearity and nonlocality.⌈

The twistor space that is referred to here, whose individual
points represent light rays in space-time M, is denoted by PN.
Thus, the point Z in PN corresponds to the locus Z (a light ray)
inside M and the point R in M corresponds to the locus R (a
Riemann sphere) inside PN.
Now, an essential part of the philosophy of twistor theory is that
ordinary physical notions, which normally are described in space-
time terms, are to be translated into an equivalent (but non-locally
related) description in twistor space. We see that the relationship
between M and PN is indeed a non-local correspondence, rather
than a point-to-point transformation. [...]
This locus R inside PN, describes the ‘celestial sphere’ (total field
of vision) of an observer at R, the celestial sphere of R being
regarded as the family of light rays through R. As has been noted
above, this sphere is naturally a Riemann sphere which is a com-
plex 1-dimensional space. Thus, we think of space-time points as
holomorphic objects in the twistor space PN, in accordance with
the complex-number philosophy underlying twistor theory. [...]
The space PN, of light rays, does not itself immediately fit in with
the ‘holomorphic philosophy’, however, because it is not a complex
space. PN cannot be a complex manifold because it has five real
dimensions and five is an odd number, whereas any complex n-
manifold must have an even number, 2n, of real dimensions. But if
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Engelbert and Roy Kerr understood it, in a certain sense. It was very strange; the idea of the 
twistors became clear to me the next day after I returned. I heard Roy Kerr explaining 
something to Ray Sachs, and they were getting very excited. I came into the next office which 
was Roy Kerr's office and said what on earth is this, what are you talking about? And Roy was 
saying I will explain what it is. Roy said, “I have this way of generating all the sheer free 
twisting congruences.” These were the things that Robinson had found a special one. Roy said 
he can find the general ones. And I asked well what are they?  He wrote down these formulae 
and said well you find an analytic function of these particular combinations of coordinates. I 
looked at them and I thought my god those are twistors.  
So, his theorem was taken as an arbitrary holomorphic function in twisted space and this gives 
you a general twisting congruence, sheer free congruence. So that was the first application of 
twisted theory, the very next day. Just that is the coincidence. 
 
JJS & JK: In the approach based on complex structures and more specifically holomorphy, we 
reason in terms of neighbourhood and not in terms of points. Thus, we can say that the 
holomorphic philosophy induces a new nonlocality in quantum mechanics, where the complex 
topology will be the fundamental structure. Do you agree with this? 
 
RP: Yes, that’s right. Yes, that certainly was a strong motivation.  Holomorphic was a very 
strong motivation. I mean there is a nonlinearity and nonlocality.  
The twistor space that is referred to here, whose individual points represent light rays in space-
time M, is denoted by PN. Thus, the point Z in PN corresponds to the locus Z (a light ray) inside 
M and the point R in M corresponds to the locus R (a Riemann sphere) inside PN. Now, an 
essential part of the philosophy of twistor theory is that ordinary physical notions, which 
normally are described in space-time terms, are to be translated into an equivalent (but non-
locally related) description in twistor space. We see that the relationship between M and PN is 
indeed a non-local correspondence, rather than a point-to-point transformation.  

 

Figure 5: A light ray Z in Minkowski spacetime M is represented as a single point Z in the twistor space PN (projective null twistor space); a 
single point R in M is represented by a Riemann sphere R in PN (this sphere representing the ‘celestial sphere’ of light rays at R).  

This locus R inside PN, describes the ‘celestial sphere’ (total field of vision) of an observer at 
R, the celestial sphere of R being regarded as the family of light rays through R. As has been 
noted above, this sphere is naturally a Riemann sphere which is a complex 1-dimensional space. 
Thus, we think of space-time points as holomorphic objects in the twistor space PN, in 
accordance with the complex-number philosophy underlying twistor theory.  

The space PN, of light rays, does not itself immediately fit in with the ‘holomorphic 
philosophy’, however, because it is not a complex space. PN cannot be a complex manifold 
because it has five real dimensions and five is an odd number, whereas any complex n-manifold 

Figure 5. — A light ray Z in Minkowski spacetime M is represented as
a single point Z in the twistor space PN (projective null twistor space);
a single point R in M is represented by a Riemann sphere R in PN (this
sphere representing the ‘celestial sphere’ of light rays at R).

wemake our ‘light rays’ a littlemore like physicalmassless particles,
by assigning them both spin (actually helicity) and energy, thenwe
get a six-dimensional space PT, which actually can be interpreted
as a complex space of three complex dimensions. The space PN

sits inside PT, dividing it into two complex-manifold pieces PT+

and PT−, where PT+ may be thought of as representing massless
particles of positive helicity and PT−, massless particles of neg-
ative helicity; see Figure 6. However, it would not be correct to
think of twistors asmassless particles. Instead, twistors provide the
variables in terms of which massless particles are to be expressed.
(This is comparablewith the ordinary use of a position 3-vector x to
label a point in space. Although a particle might occupy the point
labelled by x, it would not be correct to identify the particle with
the vector x).
It is noteworthy that this feature of space-time geometry is spe-
cific to the particular dimension and signature actually possessed
by the physical space-time we are aware of. Indeed, the fact that
the Riemann sphere plays an important role as the celestial sphere
in relativity theory requires space-time to be 4-dimensional and
Lorentzian, in stark contrast with the underlying ideas of string the-
ory and other Kaluza-Klein-type schemes. The full complex magic
of twistor theory proper is very specific to the 4-dimensional space-
time geometry of ordinary (special) relativity theory and does not
have the same close relationship to the ‘space-time geometry’ of
higher dimensions.
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must have an even number, 2n, of real dimensions. But if we make our ‘light rays’ a little more 
like physical massless particles, by assigning them both spin (actually helicity) and energy, then 
we get a six-dimensional space PT, which actually can be interpreted as a complex space of 
three complex dimensions. The space PN sits inside PT, dividing it into two complex-manifold 
pieces PT+   and PT-, where PT+   may be thought of as representing massless particles of positive 
helicity and PT-, massless particles of negative helicity; see Figure. 6 However, it would not be 
correct to think of twistors as massless particles. Instead, twistors provide the variables in terms 
of which massless particles are to be expressed. (This is comparable with the ordinary use of a 
position 3-vector x to label a point in space. Although a particle might occupy the point labelled 
by x, it would not be correct to identify the particle with the vector x).  

 
Figure 6: An analogy between the Riemann sphere S2 (= CP1) and projective twistor space PT (= CP3). (a) A complex function (i.e. a ‘0th 
cohomology element’), defined on the real axis R of S2, splits into its positive frequency part, extending holomorphically into what is here 
depicted as the northern hemisphere S-, and its negative frequency part, extending into the southern hemisphere S+. (b) A 1st cohomology 
element, defined on PN (and representing a massless field) splits into its positive frequency part, extending holomorphically into the top half 
PT+ of projective twistor space, and its negative frequency part, extending into the bottom half PT-. 

It is noteworthy that this feature of space-time geometry is specific to the particular dimension 
and signature actually possessed by the physical space-time we are aware of. Indeed, the fact 
that the Riemann sphere plays an important role as the celestial sphere in relativity theory 
requires space-time to be 4-dimensional and Lorentzian, in stark contrast with the underlying 
ideas of string theory and other Kaluza-Klein-type schemes. The full complex magic of twistor 
theory proper is very specific to the 4-dimensional space-time geometry of ordinary (special) 
relativity theory and does not have the same close relationship to the ‘space-time geometry’ of 
higher dimensions. 

The twistor perspective leads us to a very different view of ‘quantized space-time’ from that 
which is often put forward. It is quite a common ‘conventional’ viewpoint that the procedures 
of quantum (field) theory are to be applied to the metric tensor gab, this being thought of as a 
tensor field on the space-time (manifold). The view is expressed that the quantized metric will 
exhibit aspects of ‘fuzziness’ owing to the Heisenberg uncertainty principle. One is presented 
with the image of some kind of four-dimensional space that possesses a ‘fuzzy metric’ so that, 
in particular, the null cones—and consequently the notion of causality—become subject to 
‘quantum uncertainties’. Accordingly, there is no classically well-defined notion of whether a 
space-time vector is spacelike, time like, or null. This issue had posed foundational difficulties 
for any too-conventional ‘quantum theory of gravity’, for it is a basic feature of QFT that 
causality requires field operators defined at space-wise separated events to commute. If the very 
notion of ‘spacelike’ is subject to quantum uncertainties (or has, itself, become a quantum 
notion), then the standard procedures of QFT, which involve the specification of commutation 
relations for field operators, cannot be directly applied. Twistor theory suggests a very different 
picture. For now, the appropriate ‘quantization’ procedures, whatever they may be, must be 
applied within twistor space rather than within the space-time. By analogy with the way that, 
in the conventional approach, ‘events’ are left intact whereas ‘null cones’ become fuzzy, in a 

Figure 6. — An analogy between the Riemann sphere S2(= CP1) and
projective twistor space PT(= CP3). (a) A complex function (i.e. a ‘0th
cohomology element’), defined on the real axis R of S2, splits into its posi-
tive frequency part, extending holomorphically into what is here depicted
as the northern hemisphere S−, and its negative frequency part, extend-
ing into the southern hemisphere S+. (b) A 1st cohomology element,
defined on PN (and representing a massless field) splits into its positive
frequency part, extending holomorphically into the top half PT+ of pro-
jective twistor space, and its negative frequency part, extending into the
bottom half PT−.

The twistor perspective leads us to a very different view of ‘quan-
tized space-time’ from that which is often put forward. It is quite
a common ‘conventional’ viewpoint that the procedures of quan-
tum (field) theory are to be applied to the metric tensor gab, this
being thought of as a tensor field on the space-time (manifold). The
view is expressed that the quantized metric will exhibit aspects of
‘fuzziness’ owing to the Heisenberg uncertainty principle. One is
presented with the image of some kind of four-dimensional space
that possesses a ‘fuzzy metric’ so that, in particular, the null cones
— and consequently the notion of causality — become subject to
‘quantum uncertainties’. Accordingly, there is no classically well-
defined notion ofwhether a space-time vector is spacelike, time like,
or null. This issue had posed foundational difficulties for any too-
conventional ‘quantum theory of gravity’, for it is a basic feature
of QFT that causality requires field operators defined at space-wise
separated events to commute. If the very notion of spacelike’ is
subject to quantum uncertainties (or has, itself, become a quantum
notion), then the standard procedures of QFT, which involve the
specification of commutation relations for field operators, cannot
be directly applied.
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Twistor theory suggests a very different picture. For now, the appro-
priate ‘quantization’ procedures, whatever they may be, must be
applied within twistor space rather than within the space-time. By
analogy with the way that, in the conventional approach, ‘events’
are left intact whereas ‘null cones’ become fuzzy, in a twistor-based
approach it is now the light rays’ that are left intact whereas ‘events’
become fuzzy.

⌉(10)
JJS & JK: Your attachment to complex and sophisticated structures
also implies a marked geometric aspect which shows that the geo-
metric representations of mathematical structures are an essential
part of your intellectual discipline. This highlights another key
mathematical concept, that of conformal transformations.
The demonstration of the particularly sophisticated character of com-
plex structures gives an a priori argument on the privileged math-
ematical character of these structures which you call holomorphic
philosophy, can you elaborate on this philosophical conception?
RP: I use the geometric approach all the time andholomorphic geom-
etry in particular. That’s right. Well, you see my algebraic geometry
upbringing was quite useful to me because I knew the Klein corre-
spondence for instance. That was very basic to things like I do, and
I had some feeling for algebraic geometry although I didn’t have
the feeling that the people who were the mainstream there at the
time like Michael Atiyah who was a contemporary of mine. I knew
Michael. We were both students under Hodge at the same time.
But he was rather intimidating because his knowledge of algebraic
geometry completely surpassed mine. He knew what was going on
completely and I was very bewildered by what was going on.⌈

Twistor theory, as we have just seen, initially exploits a manifes-
tation of complex numbermagic different from those to be found in
quantum theory, namely the classical feature of space-time geome-
try that the celestial sphere can be regarded as a Riemann sphere,
which is a 1-dimensional complex manifold. The idea is that this
provides uswith hints as toNature’s actual scheme of things, which
must ultimately unify space-time structure with the procedures of
quantum mechanics.

⌉(11)⌈
For the space-time representation of the wave function of a

free massless particle of general spin, the Schrödinger equation
translates to a certain equation known as the massless free-field
(10)The road to reality : a complete guide to the laws of the universe, pp. 964–966.
(11)The road to reality : a complete guide to the laws of the universe, p. 967.
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equation
⌉(12), we have seen at the beginning of our discussion:

∇AA′
ϕABC...E = 0.

As I said before, ϕABC...E being symmetric in its n spinor indices, the
equation being the (conformally invariant) free-field equation for
a massless field of spin n/2.

⌈
It turns out, remarkably, which there

is an explicit contour-integral expression that automatically gives
the general positive-frequency solution of the above massless free-
field equations simply starting from the twistor function f (Za). In
fact, the expression also works perfectly well without this positive-
frequency requirement, though the requirement is easily ensured
in twistor formalism.

⌉(13)⌈
The very existence of such an expression strikes me as being

somewhat magical. The massless field equations seem to evapo-
rate away in the twistor formalism, being converted, in effect, to
pure holomorphicity, [and] when we examine this expression more
carefully, we find that there is an important subtlety about how a
twistor function is to be interpreted, and this relates in a striking
way to the positive/negative frequency splitting of massless fields.
This subtlety is also crucial to how twistor functions manifest them-
selves in active ways and provide us with curved twistor spaces.
What is this subtlety? It is that twistor functions are not really to be
viewed as ‘functions’ in the ordinary sense, but as what are called
elements of holomorphic sheaf cohomology.

⌉(14)⌈
What is sheaf cohomology? The ideas are fairly sophisticated

mathematically, but actually very natural. [...] Now think of aman-
ifold built upon which the transition functions fij differ from the
identity by only an infinitesimal amount. [...] In fact, the class of
function fij that one may be concerned within cohomology theory
can be extremely general. In twistor theory, one normally deals
with holomorphic functions. This gives us the notion of ‘holomor-
phic sheaf cohomology’. [...] An important feature of cohomology
is that it is essentially non-local. [...] This non-locality, for twistor
functions, tells us that there is no significance to be attached to
the value attained by fij at some particular point. We can, indeed,
restrict down to a small enough open region surrounding that point
and find that the cohomology element disappears completely. This
non-locality, as exhibited by twistor functions (regarded as first
(12)The road to reality : a complete guide to the laws of the universe, p. 985.
(13)The road to reality : a complete guide to the laws of the universe, p. 986.
(14)The road to reality : a complete guide to the laws of the universe, pp. 986–987.
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cohomology elements) is tantalizingly reminiscent of the nonlocal
features of EPR effects and quantum entanglement. In my opin-
ion, there is something important going on behind the scenes here
that may someday make sense of the mysterious non-local nature
of EPR phenomena, but it has yet to be fully revealed, if so.
We are to think of this ‘cohomology element’ as being a ‘thing’
defined on space Q, which is a bit like a function defined on Q,
but which is fundamentally non-local. One example of this kind
of ‘thing’ is actually an entire (complex) vector bundle over Q. We
recall that, in the definition of a bundle, that part of the bundle
lying above a small enough region of the base space (here Q) is
‘trivial’, in the sense of being just a topological product. This is
an example of the fact that if we restrict our first cohomology ele-
ment down to a small enough region, it becomes ‘trivial’ also; i.e.
it vanishes. Thus, the ‘information’ expressed in a cohomology ele-
ment is something of a fundamentally non-local character. [... For
example, consider the case of the] drawing of an ‘impossible object’
sometimes referred to as a ‘Tribar’ (Figure 7).

Figure 7. — Tribar

It is clear that the ‘3-dimensional object’ that the drawing appar-
ently depicts cannot exist in ordinary Euclidean space. Yet locally
there is nothing impossible about the drawing. The impossibility is
non-local and disappears if one considers a small enough region in
the drawing. In fact, this notion of ‘impossibility’ in such a drawing
can be expressed as a specific cohomology element. It is a relatively
simple type of cohomology, however, where the functions fij are
taken to be constants. [...]
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There are many applications of these ideas in mathematics, not all
of which are concerned with holomorphicity. The ‘sheaves’ that
one is mainly concerned within twistor theory are those expressed
in terms of holomorphic functions, and there is a special magic in
cohomology theory in this particular context. (Roughly speaking,
the term ‘sheaf’ refers to the type of function that one is concerned
with, but the sheaf notion actually applies considerably more gen-
erally than just to ordinary functions) There are many other types
of use of cohomology, including some that have importance in
the study of the Calabi-Yau spaces that occur in string theory, for
example. Also, there are several other quite different ways of
defining sheaf-cohomology elements, all of which can be shown to
be mathematically equivalent, despite their very different appear-
ances. In my opinion (sheaf) cohomology is an excellent example
of a Platonic notion, where, like the system of complex numbers C

itself, it seems to have a life of its own’ going far beyond any partic-
ular way in which one may choose to represent it.

⌉(15)
JJS & JK: How do you describe the role of Cohomology and fiber
bundle in physics?
RP: Well you can see how it works, partly. It’s a puzzling story
and certainly, twistor theory has not properly come to terms with
general relativity.
You see, tome, the non-linear gravitonwas a very remarkable thing.
In twistor theory, you can describe massless particles of any spin.
And it works very well for electromagnetism because you’ve got
spin plus one and spinminus one. Let’s call it helicity so you’ve got
the right-handed and the left-handed spin. But in twistor theory,
one of these has a homogeneity which is zero and the other has a
homogeneity which is minus four. The homogeneity is −2S − 2,
S is the helicity.
And so 2S is either plus +2 or −2, and it gives you either 0 or −4.
So, the right-handed ones were −4 and the left-handed ones were
zero. It looks very lopsided. Twistor theory was very lopsided. I
began to thinkwell maybe it is very lopsided, maybe physics is very
lopsided. But then when you look at the graviton you’ve got the
left-handed graviton which is a +2-homogeneity function and the
right-handed graviton which was a −6.

(15)The road to reality : a complete guide to the laws of the universe, pp. 987–992.
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Particle Helicity Homogeneity
Graviton +2 −6
Photon +1 −4

Very lopsided, but for the +2 one, you could see how to take coho-
mology. We will think of the cohomology in a very simplistic way.
Twistor space is basically two parts that are glued together. So,
you have, one half of the top and half the twisted space and the
other part and there’s a glue (see Figure 6). You glue the two parts
together and that gluing is done by means of a +2-degree homo-
geneous twistor function. And the gluing gives you a non-linear
version of cohomology. If you just look at infinitesimal shift of one
to the other, then that’s given by a+2-homogeneity function. I can’t
explain this without going into detail.
It’s cohomology as long as it’s just an infinitesimal deformation. But
if it’s a real finite deformation then that gives you a general defor-
mation of the twistor space. And you can look for the lines in this
deformed twistor space. I should say that I give a lot of credit to
Ted Newman, because Ted Newman was a very close colleague of
mine. He worked in general relativity in Pittsburgh. I knew him
well first, I guess, when I was in Syracuse because he was there for
six months period or more. This was in 1961 when there were a lot
of very good relativists, among them was Ted Newman. With Ted,
we worked on spin coefficients. Ted had the idea of what he called
H-space. It’s a very ingenious idea.
If I had to explain it, I would have to talk about infinity first. I have
found some insight initially when I went to a lecture by Andrzej
Trautmanwhen I was in Syracuse. Andrzej Trautmanwas one of the
very distinguished polish physicists. And he worked with Ivor too.
Andrzej Trautman was also important in understanding what was
going on in particle physics, which is you’re really looking for
connections and bundles. And I think he was really the first to
understand that. Although I’m not sure how much credit he gets
from that now. He was the first to understand what you’re really
doing in strong interactions. I think theweak interactions are a little
bit obscure. Electromagnetismwasmuchmore well-known. When
you’re looking at strong interactions, you’re looking in fact at con-
nections and bundles also. But, this is not what Andrzej Trautman
was talking about in Syracuse.
He was talking about gravitational radiation and he was looking at
the leading term in the radiation. He saw that the field was null
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when you looked at it with spinors. This is what I was doing after
the Finkelstein talk, when I started to worry about how two spinors
could be applied in general relativity.
I thought about the Weyl curvature and I realized that it was com-
pletely symmetrical with two spinors. It had to factorize into four
directions, so you have these four directions along the light cone,
and the special cases are when they converge in different ways. So,
you can have all separate or two converging or three converging or
two and two. So, these are the different ways, this was a nice way
of characterizing. This was done completely differently by Petrov
classification.
I didn’t know about these directions. But I was realizing that this
was important by thinking about general relativity. This was actu-
ally when I came back from Syracuse. Andrzej was talking about
the null case. This is where they all coincide. So, when you look at
the leading term, when you go right out to infinity, and what is the
dominant form of gravitational radiations where they all coincide,
you have these all null directions along the light cone all pointing
together outwards with the wave. So, I learned that fromAndrzej’s
talk. On the other hand, I’d heard about Ray Sachs theorem about
how the leading term is like, that’s 1/r, 1/r2, 1/r3, 1/r4. We used
to call this the peeling-theorem as you come back they peel off one
after the other like this.
So, when I got back to London, I was thinking about these things
and I realized that this peeling-theorem came out immediately if
you realize that infinity was conformally smooth. You see the his-
tory here was that, after Andrzej’s talk, I began to think: can you
do this another way’ I don’t like all these complicated calculations.
I’m very impressed bywhat he could do. But I’m not good at doing
complicated calculations. I’d much rather think about it geometri-
cally, what’s going on? And so, I remember talking to Engelbert
Schücking and I said well what we can understand about’ Maybe
we could do a conformal transformation, and I thought about con-
formally taking an inversion from a Schwarzschild solution. And I
realized then that when you do invert it, infinity is singular. So, the
point at infinity is singular, so it doesn’t work! But Engelbert told
me about Maxwell’s equations being conformally invariant.
And I thought that’s very beautiful. You have this conformal struc-
ture. You can change the scale factor in different places and this is
another reason for being interested in the conformal structure. This
was important for me. But, when I got back to England and began
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to think again about Ray Sachs peeling property, I realized that I
was looking in the wrong place. If you look at space like infinity,
it’s singular yes. But how about a null-infinity where you go out
along the light cones. And I thought at first, it must be singular.
And then I looked at it and no, it’s not! That’s only 1/r. It’s not
singular. That was an amazing revelation to me it’s not singular
and this gives you the peeling, all the leading term 1/r, 1/r2, 1/r3.
So that’s the peeling property of Ray Sachs, simply a feature of the
gravitational field, is finite. You have to think of it as a spin 2 field.
And that spin 2 field is finite at infinity and that’s facts is Sachs
peeling. So, that was a big step for me and the right way to look
at gravitational radiation. You do the conformal map and infinity
is this cylinder.
That was a good way of thinking about radiation and you could
understandBondi’s theoremaboutmass loss. Itwas a very niceway
of looking at it. Looking at energy and momentum. And energy-
momentum fits together as an energy momentum four-vector and
you get momentum conservation as well as energy in terms of the
Bondi formula and the generalization for momentum. But what
about angular momentum?
TedNewman started to think about what you needed basically was
a surface of cross-section of this cylinderized infinity, which didn’t
shear. The shear at infinity looks like a saddle. The surface has
intrinsic curvature to it so it’s like a saddle circle. So, your curva-
tures in two directions are different. And it can be negative in one.
And that’s what gradation gravitational radiation does. You started
off with something it looks spherical and it makes it saddle surface
and you need it not to be saddle surface to do the angular momen-
tum properly. So, what did Ted do, he says okay you move up your
cylinder in complex direction, you don’t just take a real time, you
take a time that is complex, and you make get rid of the saddle sur-
face. Crazy, completely crazy idea. He called this space H-space,
the Heaven space. He had a nice Jewish joke. The Heaven space is
where the good cones go. So, it’s a good cone, you see, it’s meant to
be a cone. But when you take it with the sort of New York accent,
it sounds like goy, where the good cones go. This was his Jewish
joke, a New York tourist joke.
JJS & JK: Another subsidiary question concerns the development of
spectral sequence and cohomological sequence in twistor theory.
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RP: Well, I think it does. But it’s hard to understand and I’m sure it
does it in ways that need to be understood as the next level. I think
that’s probably what it is. It’s a pity Michael Atiyah isn’t around
because I think he would have revealed in this. You see, I think
the reason we’ve never understood it properly is that we haven’t
gone to the next level. You see, in the Dirac equation, he went from
two spinors to four spinors. But that’s not quite what you do with
twistors. You go from the two spinors to the four spinors of the con-
formal group and those are the twistors. Now what you have to do
is to go from the four spinors of the conformal group to the eight
spinors of the octonions, the spin octonions and this is a new real-
ization. I think it’s a new realization. This is the quantized version.
I never noticed this before. I’d known about the quantized twistors
for years, but I never looked at the group which they satisfy. And
this is G∗

2 . So, it’s that simple. It’s the split form of this simple group
G2. And it’s just exceptionally simple; in the Coxeter-Dynking dia-
gram you have a triple connecting line.
JJS & JK: The group G2 appears even in string theory and many
other frameworks.
RP: I wouldn’t be surprised if it doesn’t have a role. I’ve never
looked at these things. It is a shame. Well, I was too slow. I’ve
been too slow in thinking about things. I should have thought of
this idea three years earlier.
I’m always slow. From when I was at school, I was much too slow.
I was too slow with my non-periodic tiling, just too slow because
my father and Escher died just before I thought of the non-periodic
tiling. Both of them would have enjoyed them so much. I’m afraid
that I missed the boat twice, three times.
JJS & JK: People recently tried to use twistors in string theory.
RP: String theory is a difficult one because it’s certainly been very
motivating by physical ideas. In a certain sense, it’s still incomplete.
The string theorists could say well yes that’s still incomplete too.
The trouble is that they don’t pay much attention to dimensional-
ity. And the problem is if you have a space in which your functions
exist, a function of many variables then you have many functions,
or a certain amount of functional freedom which in physics is very
restricted. This functional freedom is really function of three vari-
ables. And it’s because it depends on the space, you find that the
temporal behaviour is governed by the spatial behaviour. If you
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want to deviate from that you have to see where all the extra func-
tional freedom disappears. In string theory, people don’t address
that question. They try to say, well the energy is enormously large
and to excite these extra degrees of freedom you need to have too
much energy. But I think that argument is just wrong because the
energy is not all that large. The energy is certainly much less than
the energy of the earth in its orbit around the sun.
The trouble is this energy is for the entire universe and the earth
going around the sun has far more energy than you would need to
activate these degrees of freedom. It’s a point that has never been
addressed by the string theorists. I mean, I tried to make this point,
particularly in my book ‘The road to reality’. And I had never seen
anybody in the string theory world address those arguments.
JJS & JK: Did you discuss this issue with Edward Witten? He is
interested to make the bridge between string and twistors theories.
RP: You see twistor theory is not like those theories, because you’ve
got to stick with space-time, which has the dimensionality we see.
Now, you could say that twistors space is six dimensional or eight
dimensions. Well, the projective space is three complexes dimen-
sional, so it’s already six dimensional. But that’s not the point. The
points are these Riemann spheres if you like, and they have to be
restricted to the space PN which is the five-dimensional subspace
and then you have a four-dimensional family of these things. So,
it’s the right number of dimensions. So, with twistor theory, the
dimensionality comes out right, but people don’t pay much atten-
tion to that.
But there is aweakness in twistor theory right from the start. Imean
it’s been a combination of puzzling issues and things working in a
way which I had much better than I had anticipated. In a way, I
hadn’t anticipated.
I always regretted having my conventions the wrong way around.
Now it wouldn’t have mattered except that when Edward Witten
got interested in twistor theory. He went to my original paper
where all the conventions are wrong, and he took the wrong con-
ventions.
Most particularly what concern the twistor points along the light
cone or the null twistor. Now you see, I thought the points were in
terms of a vector but it’s not a vector it’s a co-vector. I realizedmuch
laterwhen youunderstand the quantummechanics and everything.
It’s a momentum, it’s not a vector it’s a co-vector. But I didn’t know
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that at the time, so I made it a pointing vector. It’s really a dual
vector. I corrected it afterwards in my next paper, but E. Witten
didn’t refer to my next paper maybe. I’ve always regretted that
the upstairs (indices) was should be downstairs and downstairs
should be upstairs.
JJS & JK: Did you have the occasion to tell Edward about this?
RP: Oh, yes! but that didn’t get anywhere. But you see, I am fussy
about signatures. And working in Lorentzian geometry, I believe
you have to have one time and three spaces.
Very clear. Well Riemannian geometry has four spaces. Now many
people who work in differential geometry in Oxford work with
four (+ +++). In fact, I worked with self-dual and anti-self-dual.
That was fine for them because you can have real ones which are
(+++) signature, which is self-dual. Whereas Lorentzian, they’ve
got to be complex. Now in twistor theory, Atiyah and his group
also picked up on twistor. They did important things with Richard
Ward who was a student of mine and who developed these ideas.
His ideas were picked up on by pure mathematicians. They did a
lot of very interesting work on Yang-Mills theory. But this means
in the twistor theory, they’re not using a 3 − 1 signature i.e. you’re
not using a space-time signature. But whatWitten did, was a space-
time which has two times and two spaces and then you make your
twistor theory real. With the Lorentzian space-time signatures, the
twistor space is 2 − 2 signature. With the positive definite space-
time structure, your twistor space is quaternion. It’s quaternionic
twisted theory. With the Witten type, he has two times in two
spaces and the twistors theory is real. It’s a real space-time.
And I find this is going in a completely different direction. I can
see why he did it. He did it because he wanted to be able to talk
about delta functions and step functions and polyhedral. And this
kind of notionwhich if you’re stuckwith holomorphic, you can’t do.
And you’ve to look at hyper functions instead of those functions.
And hyper functions are functions where you look at the analytic
approach which I think is the right one. But it’s more complicated
and if you want to look at things where you can talk about general
functions which can have steps and delta function, then you face
not discontinuous and not smooth and so on. Okay, you can make
twisted theory real but that means a space time that has two spaces
and two times dimensions. To me, that’s not physics theory. It’s
too removed from the physics.
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You see, I think the idea is that you do the physics in thewrong signa-
ture and then you do analytic continuations and you continue back
to the right signature. I mean this goes back to these ideas for station-
ary space-time. It’s quite useful to make the time imaginary, but it’s
very limiting if you want to think about physics generally. Because
I mean your time is not such, time is just real time. It’s all right if it’s
stationary but if it’s a general space-time, this doesn’t work.
So somehow, you’re going into, in my view, the wrong direction.
You may find that doing path integral or something like that is eas-
ier, because you don’t have so many horrible divergences, if you’re
trying to minimize things and paths. But, in the Lorentzian space,
it’s a mess because they’re not bounded, you can make them zero
and the inequalities don’t work somehow. This approach is limited
because you’re not doing what the physics is telling you to do.
You’re doing something where the mathematics is attracting you
in a certain direction which is limited. And if you’re trying to do
things like path integrals in a positive definite space where it may
make some sense and then you try eventually to do aWick rotation
or something which means you change, your make things analytic
and then you rotate back. This is not really, what physics is telling
you to do. You’re being motivated by things that you find are con-
venient mathematically but, in a way, not telling you where the
physics is going. This is if I can express myself in a way which is
perhaps slightly rude.
JJS& JK: Youmentioned that all the time youwere appealed by find-
ing discrete numbers and complex analytic approaches. Do you
think this new paradigm will play a role in the overall picture of
physics in the future?
RP: It’s a good question. You see, they were more or less equal
and when I was trying to think about physics in a deep way. I was
equally divided between combinatorial ideas and complex analytic
ideas. And I produced this spin network scheme which is purely
combinatorial. And I played along with that. I’m not sure how
far it went. But I remember, I was very curious, because when I
talked about this lecture I heard given by David Finkelstein, Dennis
Sciama had driven me to London King’s college and this converted
me to work in general relativity. But David Finkelstein was work-
ing in relativity and I explained to him spin networks. And he then
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went on to work on combinatorial physics. So, we swapped sub-
jects. I was working in combinatorial physics and he was working
on general relativity.⌈

My own particular goal had been to try to describe physics
in terms of discrete combinatorial quantities, since I had, at that
time, been rather strongly of the view that physics and space-time
structure should be based, at root, on discreteness, rather than con-
tinuity. A companion motivation was a form of Mach’s principle,
whereby the notion of space itself would be a derived one, and not
initially present in the scheme. Everything was to be expressed in
terms of the relation between objects, and not between an object
and some background space.
[I had concluded] that the best prospect for satisfying these require-
ments was to consider the quantum-mechanical quantity of total
spin of a system. ‘Total spin’ is defined by the scalar quantity
j(= 1/2n) that measures the amount of spin as a whole, rather
than a particular component of spin in some direction, measured
by a quantity m. (The letters ‘j’ and ‘m’ are those commonly
used in the discussion of quantum-mechanical angularmomentum,
taken in units of h̄, where m ranges, in integer steps, between the
integers or half integers−j and j.) [...] Moreover, though direction-
independent, n is nevertheless intimately related to directional
aspects of space. It had seemed to me that total spin, as measured
by the natural number n, was an ideal quantity to fix attention upon
if one were interested in building up, from scratch, some discrete
combinatorial structure that leads to a notion of actual physical
space. As a further ingredient, if one sets things up in the right way,
one could exhibit the quantum-mechanical probabilities as being
pure probabilities, not dependent in detail on the way in which dif-
ferent parts of a physical apparatus might be oriented with respect
to other parts. [...]
This was the sort of idea I had for getting pure probabilities, and I
had formed the opinion that any such probability had to come out
as a rational number (since it would amount to Nature making a
random choice of some kind between a finite number of discrete
possibilities). [...] All the units in a particular spin network are
imagined as being initially produced from initial 0-units (although
this would not be normally expressed explicitly in the diagram),
so there is no bias with regard to any particular spatial direction.
Subsequently, various pairs of units may then be brought together
to form single units, and the spin values for the resulting units are
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noted. Individual units are also allowed to split into pairs of units.
[...]
However, for the original spin-network theory, there was to be
no actual background space-time presupposed. The idea was to
build up all the required spatial notions simply from the network
of spins and from the probabilities that arise (and these can be
computed using quantum mechanical rules) when two units are
brought together to make a third. A particular feature of these
spin networks is that, at each such vertex, exactly three lines come
together. This leads to uniqueness in the probability calculations.
The topological (graph) structure of the spin network, together
with the specification of all the spin numbers on the lines, is all
that is required.
I developed an entirely combinatorial (‘counting’) procedure for
calculating the required probabilities (which, in fact, are all ratio-
nal). The rules originally come from the standard quantum
mechanics of spin, but we can then ‘forget’ where they come from
and simply consider the spin-network system as providing a kind
of ‘combinatorial universe’. It is then possible to extract the notions
of geometry (ordinary Euclidean 3-geometry in this case) by con-
sidering spin networks that are ‘large’ in an appropriate sense. The
picture is that a unit of large spin might be considered to define
a ‘direction in space’ (to be thought of as like the axis of spin of
a tennis ball, for example). We can envisage measuring the ‘angle
between the rotation axes’ of two such large units by, say, detaching
a 1-unit from one and attaching it to the other. The joint probability
that one spin goes up while the other goes down, in this operation,
gives a measure of the angle between the spin axes.
This almost works as it stands, but not quite, and a further ingre-
dient is required. What is additionally needed is a means to
distinguish the ‘quantum probability’, coming from the angle of
spin axes between the large units, from the ‘probability through
ignorance’ that can come about simply because of insufficient con-
nections between the two large units. [...]
It will be seen that the underlying motivation behind the spin net-
works that I originally had is very different from that underlying
the loop variable approach to space-time quantization, there being
no actual place for gravity in the spin networks, as originally put
forward. Of course, there is something very much in common
between the twoprogrammes, because, in each case, one is trying to
break down the notion of space into something more discrete and
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quantum-mechanical. There is, however, the important difference
that in the loop-variable context, the quantity n is really an areamea-
sure, rather than the spin measure of the original spin networks.
[...] I regard as a necessary feature of the correct quantum grav-
ity union that it must depart from standard quantum mechanics
in some essential way, so that (state-vector reduction) R becomes
a realistic physical process, [...] but my original use of spin net-
works did not address such metric issues nor, in fact, any aspect
of gravity at all, the spin numbers n referring to angular momen-
tum. However, my original ideas demanded that each of these
numbersmust be, in effect, the result of an individualmeasurement
of total spin value (action of R at each edge), where probabilities
arise in the bringing together of two units to make a third. If R is
an objective gravitational phenomenon, then the involvement with
gravitational processes would have to enter at this stage. [...] In
that case, it is not possible to separate gravity from the probability
issues of spin-network theory. It may be that the full combination
of loop-variable and spin network ideas will need to incorporate
state reduction into the formalism.

⌉(16)
§ 3. — Cosmology.

JJS & JK: You mentioned that after attending Finkelstein’s lecture,
you started to get interested in the problem of singularity.
RP: Yes, I was starting to think not in a way which was well. I
learned enough about the Weyl curvature that was important to
know about. Because it was so simple for spinors. I think people
were put off because you write the conditions down in tensors and
it’s messy. And so, they say, oh look I won’t bother with that unless
they’re very good at computations and then they’re happy.
But with spinors, it’s just simple. For, it’s all the same symmetrical,
the equation, the Bianchi identities. It’s just two wave equations
and the relationships with other spins are just beautifully clear.
I’m trying to write something even now on CCC with Christopher
Meisner which uses a theorem which I’m just realizing how easy it
is. Looking at week field gravity in terms of two spinors is so much
easier than if you’re using ordinary methods. And you can talk

(16)The road to reality : a complete guide to the laws of the universe, pp. 947–955.
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about the conservation laws of energy-momentum much more eas-
ily than you can if you try to write it all in conventional notations.
There is a theorem. Let me just tell you this much, I don’t think
Christopher Meisner wants me to talk about it too much because
we’re still writing a paper. You see in Maxwell’s theory, you have
a nice Gauss law. Let’s think you’re in space-time. So, you’ve got
four-dimensional space time and you’ve got a charge current going
through in space time surrounding these by two spheres. Now you
do integral over the 2-spheres and you can work out the electric
charge and the magnetic charge if there was a magnetic charge. So,
the electric charge is an integral over the 2-sphere and themagnetic
charge is zero. Now that’s just to spin one. In two spinors, that’s
two indices, how about four indices? Okay then look at spin two.
And you have a quantity that changes the spinwhichmoves you up
and down into spin and that’s a twistor. Twistor moves up by spin
half so if youwant tomove up from spin one to spin two, you need a
two-index twistor. That two index twistor converts the Gauss inte-
gral into a four integral and that four integral tells you the energy
momentum inside the 2-sphere. Well, we can do that. I mean Ray
Sachs wrote a paper where you do that sort of thing. But you can
see immediately what this is because the twistor is the spin raising
or spin lowering. Or I should say helicity lowering operator and
the dual twistor is a basically raising operator.
JJS & JK: This gives us a connection with CCC. Anyway, we will
ask you later on about the CCC and twistors theories.
RP: It’s a beautiful connection, that’s right.
JJS & JK: Another question concerning the singularity, because it
seemed that you didn’t share the same conception about the singu-
larity with Stephen Hawking, right?
RP: That is true in a certain sense because the terminology was dif-
ferent. It is true that it appeared in the title of the paper. I think
it was called ‘space-time singular.’ I can’t remember the title of
my paper, the one that got the Nobel Prize. Certainly, I didn’t
mention black holes because that terminology was not used then.
“Gravitational collapse and space-time singularities”, I think I did
use the word ‘singularities’.
But mainly the argument in the actual paper, I just said well look,
there’s a problem if the energy flux across that, light rays is never
negative, maybe this that you have no Cauchy-surface, maybe you
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have non-completeness or something. I don’t think I’d call it singu-
larity. But of course, the idea is why does it stop’ Why does your
space-time stop’ Well probably because curvature becomes infinite,
but it doesn’t say that. Now you see, when I gave my talk explain-
ing my theorem at King’s college in 1964, I remember J.L. Synge
was there. He was a wonderful Irish relativist and he had written
two books using a very geometrical point of view. So, I was very
pleased he was there. He was not normally in London, but he went
to my talk and I was very proud to have J.L. Synge present in my
lecture not Stephen Hawking.
Stephen Hawking was not there, despite what the movie seems to
imply. However, I gave a talk and Dennis Sciama heard about it.
He was in Cambridge at the time. And so, he invited me to give a
repeat talk in Cambridge. It was sometime in 1965. I think maybe
January or February. And I gave a repeat talk, the same thing. And
following the talk, I had a private session with Stephen Hawking
andGeorge Ellis possibly Brandon Carter but certainly George Ellis
was there. And I remember describing the techniques I was using.
And Stephen Hawking picked up very quickly on these ideas.
A few months later, he wrote a paper on using my actual theorem.
Not changing the theorem but applying it in a cosmological context.
So, you could derive a slightly weak theorem, but it was sure it was
a theorem that showed that in cosmology that singularities were
inevitable. But you see in cosmology, you don’t have this problem.
If you’re looking at a local collapse, you’re comparing an infinite
initial surface with the finite region. You look at the boundary of
the future of the trapped surface and it’s, unless you have a singu-
larity of some sort, a bounded finite region. And then you have
a contradiction when you try to project that back into the infinite
unbounded plane. You have a contradiction between the compact
region in the black hole and the non-compact surface.
So, when Stephen Hawking tried to apply this thing in the cos-
mological context. He had to assume that the universe was
non-compact. And so, he wanted not to have to assume that. So, he
developed these ideas following this in many ways and introduced
a lot of new ideas, new concepts. A lot of this was done with the
help of Brandon Carter. I have to say Brandon Carter is an unsung
hero in this story. Largely because Stephen had very good ideas.
He was often a bit careless. So, there were sometimes mistakes in
the arguments. But I would call these mistakes of the first kind, not
mistakes of the second kind. When I say mistakes of the first kind,



M
×

Φ
vo

l.
1

©
2
0
2
2

34 J.-J. Szczeciniarz & J. Kouneiher M×Φ vol. 1

these are if you can get around them and correct them. And then
they’re all right.
Mistakes of the second kind are when you can’t correct them. That
is just a disaster. These were all mistakes of the first kind, and
Brandon Carter noticed the mistakes, pointed them out to Stephen.
And Stephenwould then correct them. This happened almost right
up to the Ph.D. thesis when therewas somemistake still in the argu-
ment.
But themovie waswrong there, in that Kip Thornewas not present.
Dennis Sciama and I were present. But Stephen had already found
all mistakes and corrected them. So that was fine. But these were
not serious mistakes, I would say. The ideas were certainly very
good, and he had ideas for developing the techniques I use.
Mainly looking at things like what he called Cauchy horizons. You
could take a region and look atwhat is the boundary orwhat points
are determined by the data on that surface. So, you look at the past
light cone and you could see that all the time-like pairs which go
through that point and do they meet this initial surface. And ideas
like that which were very important and enable you to move these
theorems forward in a way which I had not done. And that we got
together later at the end and wrote a paper together. But Stephen
had developed a lot of these ideas originally in three papers in the
Royal Society. So, he certainly carried these ideas further and not
exactly single-handedly but a lot of the work one of the important
it was done by him.
JJS & JK: Did he use your space-time diagram?
RP: Yes, he certainly knew about the diagrams. I think Brandon
was a very important figure in the development of these ideas and
to some extent, an unsung hero. I would say he formalized the
diagrams. There was a big argument about should you call them
Carter diagrams. My ideas were not formalized to the degree that
he had achieved. I mean he had certainly looked at many solutions
and showed how these diagrams could be used in a very much
more formalized way than I had. I was thinking of more as help-
ful ideas and not necessarily formalizing them. I would call them
either conformal diagrams or strict conformal diagrams. And these
strict conformal diagrams are really Carter diagrams, you could say
that. And the general ideas if you like those were the ones I was
playing with initially. But I just prefer to call them ‘disconformal’
diagrams or strict conformal diagrams. But I’m not sure that even
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Brandon quite had this full strictness that I had eventually, with
certain rules about when you have points which are filled in or
unfilled in points and whether they represent circles. They’re only
spherically symmetrical solutions, strictly only apply in the case of
spherical symmetry. And it’s a question of whether the points at
infinity are actually spheres or only points. So, the sphere went
with the open points and the points with the closed points. So, I
had a very strict definition of what these diagrams meant.
JJS & JK: Question about at the black hole singularity, when Weyl
curvature goes to infinity, does the quantum gravity still have a
sense?
RP: Well you see this is a huge story and I think people are often
very confused about that story. And the problem has to dowith the
theorems, particularly the theorems that Stephen and I developed
and Bob Geroch. I should mention Bob Geroch was an important
figure in this too. So, Brandon Carter, Bob Geroch and Stephen and
George Ellis worked with Stephen on the book.
What I was concerned with initially was the gravitational collapse
and the singularities in what we now call black holes and I sort of
took the view that singularities are generic. That’s the main lesson.
Stephen said okay; let’s look at the big bang. Is that generic?
Well you see, if it’s a generic case you still get singularity, so you
don’t avoid it by having a bounce through a complicated non-
generic type of singularity. So, that was the important argument he
made. But the problem with all this is that the arguments are sym-
metrical in time. Everything we did future or past, we just change
the sign. Go this way or that way, everything you do in one way
it works the other way.
However, and I remember, this was an important very brief con-
versation I had with James Peebles. This must have been after
the singularity theorems. I was probably still in London and vis-
iting Princeton. And people were going from Princeton to Stevens
Institute which was in Hoboken New Jersey on the river separat-
ing New York from New Jersey. Stevens Institute was a good spot
for conferences on general relativity because the people in Syracuse
could drive there from upstate New York and from Princeton. It
was a good location. And they had frequent conferences there. I
was about to join a car driving to this conference, and I noticed sit-
ting in one of the other cars in the back was Jim Peebles. And I
asked him a question, because I had been very worried about the
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fact that there were all these different cosmological solutions that
had different kinds of singularities and were very complicated.
I asked him: ‘well look there are all these complicated solutions in
cosmology and all possible singularities you could have. Why do
you cosmologists, only look at this simple case? Whydon’t you look
at all these other possible singularities for the structure of the big
bang” And he looked at me and he said, ‘The code of the universe
is not like that’ I thought my God ‘it isn’t, is it?’.
I presume he was thinking about the microwave background and
you see this very uniform structure. And it’s not complicated like
all these other solutions. So, this was to me, a huge point. It was
not just, ‘it’s not like that’, but ‘why is it not like that?’
So, I began to worry about why the big bang is so special. And
thus, it must be tied up with the second law of thermodynamics.
And then I remember giving a talk somewhat later in Caltech. Here
I have to reverse time slightly. Maybe I have to tell you about a
conversation that somebody had with Richard Feynman.
Feynman had noticed that I was giving a talk about the second law
of thermodynamics and cosmology. And he had told this colleague
saying “oh look at this talk, this guy is talking about second law of
thermodynamics and cosmology. I’m going to go and heckle”.
I didn’t know this. So, I gave my talk about cosmology and
probably, I don’t remember exactly, I was talking about the Weyl
curvature and things like this. Somebody behind Feynman proba-
bly a Nobel Prize winner, because Caltech is full of them, started to
heckle me. Suddenly Feynman turned around and pointed to the
man and said, “You shut up and listen to what the man is saying”.
Feynman came up and said, “Look this is real advance it’s really
important” and I said “well look I don’t know why is the Weyl cur-
vature”, and he said, “don’t care about the second question you’ve
made a big important step”.
JJS & JK: You said the big bang is of a special kind.
RP: Yes, the big bang has to be of a special kind. What is special
about it is probably the fact thatWeyl curvature is zero. I think that
the singularity in the big bang is a very peculiar kind of singularity.
It’s that case for which the Weyl curvature is zero or very small.
Take the example of a gas in a box, as the entropy goes up, it
makesmore uniform. But if there are stars going around each other,
entropy goes up when they become less uniform, the Weyl curva-
ture goes up and you get these singular states in black holes. And
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it’s still singular state, but it’s not anything like the big bang. So,
the key point or the quick question was why the singularities in
gravitational collapse are so utterly different from the big bang one.
Everybody was saying, even me, “oh, its quantum gravity, we’ve
got to learn about quantum gravity”. Dennis Sciama, my great
hero, who taught me so much physics, was a great proponent of
the steady statemodelwhichwas a very beautifulmodel. Butwhen
the big bang, and Penzias and Wilson saw this micro background,
Dennis went around giving lectures to say: “I was promoting this
steady-state model, I was wrong”. You don’t hear people or physi-
cists say that very often. I had a lot of respect for Dennis. There is
a double irony here because Dennis got a lot of graduate students
studying the big bang by looking at quantum gravity. The irony
is that he was still wrong. Exactly, it’s still wrong because it can’t
be quantum gravity. In the beginning, I was on Dennis’s side and
think that we’ve got to learn quantum gravity. Quantum gravity
is a very peculiar kind of quantum mechanics that is grossly time
asymmetrical. It has to be a time asymmetrical theory and so I tried
to say how you can have an asymmetrical gravitational theory for
which theWeyl curvature has to be zero in initial singularities. So, I
postulated the Weyl curvature hypothesis: The Weyl curvature has
to be zero in the initial singularities.

It doesn’t make any sense from quantum gravity. I did believe
then and I still believe now, this is because combining gravity with
quantum mechanics is not quantum gravity. It’s partial; it’s grav-
itizing quantum mechanics as much as it’s quantum gravity. The
collapse of the wave function has to be a gravitational effect. And
the quantummechanics, as we now understand it, is an incomplete
theory. And the gravity was what changes it, but we’re still stuck
with that.
JJS& JK: So, you think that quantummechanics should be changed?
RP: Yes absolutely. But I believe that from way back, but not quite
in the sameway as I do now. I think it’s a stronger and quite slightly
different view. I used to think that quantum gravity had to be an
asymmetrical theory. But I think it’s wrong to call it quantum grav-
ity. So, when I say Dennis was wrong and I was wrong, I’m trying
to say that it’s not what we would call quantum gravity. It’s some-
thing else.
So, this is where CCC comes in. That idea came much later. That
was more like 15 years ago, I can’t quite remember when I first
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thought about that, but it was the idea partly influenced by Paul
Todd, who was a very good graduate student of mine originally.
What I’m saying is that quantum gravity is not giving us an answer
because it’s a not very fruitful way of looking at it. The more fruit-
ful way is to take Paul Todd’s suggestion more seriously. So, his
suggestion was: “look, let’s study the type of singularity that we
happen to find in the big bang, which is very special. Rather than
just saying the Weyl curvature is zero, let’s say it’s extendable as a
conformal manifold”.
So, I’d vaguely thought about this myself, but I’ve never worked
with him. Todd remarked that the Weyl curvature is not certainly
zero. So, it has to be finite to be extendable. He worked on this
and worked a lot of equations on it. And then I thought about
CCC, and thus, it’s got to be zero. That’s because of some theorems,
particularly Helmut Friedrich’s theorem: if you have a positive
cosmological constant and you have massless sources, then in the
generic case, you’re going to get zero Weyl curvature at infinity.
Well, you see it was awkward because I think Paul had some prob-
lems with it. I remember in his way of looking at it. And I said
no you’ve got to do it this way and it means you have to look at
it slightly differently. I can’t remember what the problem was ini-
tially right now. But, if you’re going to make the Weyl curvature
equal zero, you run into problems that look like negative curvatures
or negative energies or something like that. It’s tied in with the pro-
duction of initial dark matter. I think that’s what it was. You need
to have the creation of newmaterial which is darkmatter and that’s
in order to make CCC work. You have to have this initial material.
And I think with Paul’s way of looking at it you didn’t have that.
I’d have to go back and remember what he did there. But you had
to generalize what he was looking at, and the generalization allows
you to talk about an initial state which has dark matter in it.
JJS & JK: Quantummechanics is working verywell, with very beau-
tiful results. The problem arises when you try to combine the two
theories: general relativity and quantum mechanics.
RP: In a sense, when people think about quantum gravity, if that’s
the right term, they’re looking in an unhelpful direction. They’re
trying to see how very high curvatures, Planck scale energies, all
these kinds of things may change physics. Sure, it may. Why I say
its unhelpful is because it’s not guided by experiment.
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Whereas the other ends of the subject which is how gravity might
affect the structure of quantum mechanics is very borderline. And
when I say borderline, it means in a good sense that we’re close
to seeing these effects. I mean, my colleague Dirk Bouwmeester
who is a Dutch physicist, who’ve been working on an experiment
for decades trying to put a little tiny mirror into a superposition
of two locations at once by beam-splitting a photon and hitting it
many timeswith this photon and seeingwhether you can see if that
maintains itself or it comes one or the other.
It seems that he was getting very close to getting a result here. But
he seems to have problems with getting anything cold enough and
having very worries about temperature fluctuations and things like
this, which is a difficult problem. I don’t know exactly where it’s
gone this experiment at themoment. The last time, I heard him, and
he changed it rather, I didn’t quite understand the version that he
was talking about. There are other types of experiment involving
things like beads, little tiny spots which are put into superpositions.
It’s a bit like the mirror but in a different way. Or Bose-Einstein
condensates and I think that’s quite a fruitful way of looking at
it. I have a colleague Yvette Fuentes, who is interested in putting
Bose-Einstein condensates andmaking big enough ones, so you can
actually see if you put your Bose-Einstein condensate into a double
way and split it into two locations. Does that persist, or does it tend
to leak one into the other spontaneously or does one of them disap-
pear and become entirely in the other?
There is a new experiment that would see this effect. Because you
can estimate at what level it should happen. So yes, these are things
which are not out of the blue; they’re not simplywaving your hands
and, who knows where. One can estimate from looking at conflicts
between the principles of general relativity and the principles of
quantum mechanics, and when I say that the principle of general
relativity, which is fundamental, I mean the principle of equiva-
lence. That is to say the equivalence between a gravitational field
and an acceleration. For instance, Galileo’s idea of dropping a big
rock and a little rock, do they fall together as long as you can get
rid of the air resistance? He appreciated that perfectly well air resis-
tancewould spoil it, thenwould they fall together? And he says yes.
Is that correct’ Well, as far as we know, yes. What effect does that
have on quantummechanics’ A big effect because if you try and do
your quantum mechanics in a way which is invariant under these
replacing of the gravitational field by an acceleration, you run into
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problem with the gravitational vacuum or the vacuum. And this
problem can be resolved by the reduction of the state. So, it gives
you an idea of at what level should you expect to see that a super-
position between a mass in two locations simultaneously one there
and one here. How long can you preserve such a superposition and
one can make an estimate of how long that should be? The experi-
ments are not yet at the level to see this. But they’re not too far.
It’s Planck scale energy in a certain sense, but it’s not high ener-
gies like in particle physics. You’re looking at big energies because
they’re spread you’re looking at big things.
JJS & JK: What do you think about loop quantum gravity?
RP: It’s better than strings. For a very important reason, they’re
using the right number of space and time dimensions. It’s nearer
to reality but it doesn’t sort of come to grips with these questions
as far as I can see. I don’t know. I haven’t seen a way of making it
come to grip with it. I mean if it really did relate to the measure-
ment issue. But you find amongst these loop people they’re not
very sympathetic towards CCC. You know I’ve talked to Ashtekar
and of course lots of times with Carlo Rovelli and you know they
take my view on board in the sense that they don’t think I’m crazy.
But they don’t incorporate these ideas into it, at least I haven’t seen
it maybe I’m too limited in what I’ve seen them do.
JJS & JK: They use, to some degree, a version of the spin network
basically.
RP: They do to some degree but that’s not my spin network. It’s
more aiming at the right kind of thing. But on the other hand, I
don’t see them bringing in what I regard as essential. And what
I’ve seen when they talk about the big bang. Ashtekar talks about
these things and he certainly hasn’t taken CCC on board at all. So, I
mean, I’d be happy to look at it, if they can see a way of making the
loops fit in with CCC in some sense that would be very exciting. I
would be very keen to see some serious theory loop quantum grav-
ity or whatever if it somehow could relate to CCC. You see the time
asymmetry seems to be very important. They tend to look at more
like bounces. Youhad something non-singular on both sides. There
are other schemes, well like Steinhardt and so on. Then they have
schemes where they try to get rid of inflation, but I can’t see how to
make that work. But I have a lot of trouble with it.
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Ashtekar has never taken it seriously. But this is so basic. It’s the
second law of thermodynamics; none of these theories take it seri-
ously. See as far as I’m aware, CCC is the only theory, the only one
I’ve seen whichmakes a serious stab at explaining and deriving the
second law of thermodynamics. And you can say where does it go,
where does the entropy go’ Well it goes into the black holes. The
entropy in the current universe is almost entirely in black holes.
By a huge factor, I’m just taking Beckenstein-Hawking as the for-
mula for the black hole Entropy. And it dominates enormously
absolutely everything else. Now this will go up and up and up
and as the black holes swallow galactic clusters, the stars get swal-
lowed and the other black holes get swallowed and eventually you
just have one black hole. Finally, that evaporates away by Hawking
evaporation. Maybe a lot of entropy goes out in the evaporation.
Maybe it goes disappears in the singularity.
Doesn’t make much difference to me, because in the conformal dia-
gram, all that gets squashed into one teeny window point which
on the other side is less than the Planck scale. So that means much
much much less and it’s not just less. It’s horrendously less. So,
what happens to all the information. So, it’s lost.
It comes out that you get a lot of information energy coming out.
That you get mass energy coming out of the next aeon but there’s
no room for that much information.
JJS & JK: What is the major problem in cosmology?
RP: This is my very biased personal opinion. The major problem in
cosmology is they don’t take CCC seriously.
And to take it seriously, you’ve got to think about various things.
One is mass decay because the mass does have to disappear. That’s
connected with Higgs but there is more complicated story I think.
So, the mass has to fade out in the very remote future. But it only
fades away. It’s never quite zero, I think. But that’s one issue you
have to have no inflation. Inflation spoils the picture. However, you
don’t need inflation. Well first of all it’s supposed to smooth out the
universe, but it doesn’t. The universe is already smoothed out by
the exponential expansion of the previous eon. The problem I guess
is that inflation is often introduced in order to explain get getting
rid of local divergences and things. I don’t know, I’m no expert on
inflation; I’ve deliberately not looked at it.
I’ve had long arguments with Alan Guth, he gets very upset about
these things because of course he wants inflation. And I don’t want
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inflation. Inflation would mess up any signal. If there was an infla-
tionary phase of any significant degree, it would mess up signals
coming from the previous eon. That would include the Hawking
points. It would include the ring. Now you see, there are so many
arguments and complaints. When Vahe looks at his rings, he did
the analysis in an inappropriate way originally and so people com-
plain about that. The paper was originally sent to the Royal Society
and it was rejected and then they reconsidered it and accepted it
on the condition that Vahe would produce his analysis. And this
means of course doing the analysis. He didn’t want to do this.
So, we sent it to another journal and had been accepted before the
change of mind had come from the Royal Society. They changed
their mind already when it had been accepted by this other journal.
I was rather keen on getting it back into the Royal Society but Vahe
said in no way, he was fed up with Royal Society. He was going to
send it to the European Physical Journal. So, we sent it there.
We did not put in the paper the analysis that he had done to prove
the significance. Instead, we looked at the argument of what hap-
pens when you deform the sky and make them look like ellipses.
And then the significance drops dramatically, that is to say, the
number of rings you see, drops dramatically. However, it’s not
the kind of analysis that other people use, so they didn’t pay any
attention to us. We also had this second paper in which we looked
at Planck analysis (not the WMAP). And you can see by eye the
enormous anisotropy in the sources of these signals. And it’s just
completely obvious that it’s not isotropic. People just say they pay
no attention to it. Now you see a polish group, completely inde-
pendently of us did an analysis completely different way much
more conventional in their way of looking at it, and they kind came
up with a confidence level of the rings. This is the rings not the
Hawking points. Confidence level of 99.4 percent. Which peo-
ple ignore because that’s not enough signal for people in particles
physics. It’s fairly strong evidence. I think it was 99.6 in their orig-
inal WMAP data. The Planck data was 99.4. But then later on,
we did the Hawking point analysis which is completely different
phenomenon. People were confused with this, because the way of
doing the analysis which was very similar for the one of looking for
rings and they thought ‘oh, you’re just looking at different rings’.
Completely wrong, that was not what we were looking for. We are
looking for spots. They should be called Hawking spots because
that’s what they are. And these spots have a 99.98 confidence level.
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Now there is an irony here, which I won’t even talk about. There
is an irony, because I’ve had a long conversation with Alan Guth.
And there is something which wasn’t quite right in our paper. I’m
not going to tell you what it was. We’re now having a new paper
that was not aimed at this thing not being right it was aimed at
something quite different, butwe have to correct this thing. And it’s
extremely interesting because what is not quite right in that paper,
is more interesting than if it was right.
But I don’t think I’ll go into that. If you want to explain that, you
can listen to him. I have to give him credit because he pointed out
something which we hadn’t noticed. It doesn’t help him because
these points if they’re there at this level, inflation has to be wrong.
These points don’t come from inflation. Inflation would wipe them
out. I can’t see however in inflationary theory, you would get these
spots. You would say ‘look elsewhere effect’. In fact, that’s what I
was trying to say. What they call a ‘look elsewhere effect’. I don’t
see how it can possibly be a look elsewhere effect. He has more of
a case than I thought originally. Because there is a certain mistake
which is very curious how this mistake happened.

§ 4. — Philosophy.

JJS & JK: In your opinion, which philosophy best describes your
view of the world or your way of thinking?
RP: I am very platonic in the sense that the platonic world exists
independently of humanity if you like. It’s a world on its own,
which does not depend on. It’s being perceived by anybody. So,
if there were no beings in this aeon that mathematics would still
exist, just as well as if they were beings in this aeon. Suppose we
were wiped out tomorrow by a nuclear explosion. People are being
distracted by global warming instead you see. Then what happens
to themathematicalworld, it doesn’t get destroyed just because peo-
ple don’t think about it, it’s still there. So, I’m a Platonist in that
sense.
But is the question that the world itself operates according to math-
ematical laws? With that, I think too it does raise a very tricky
question. If theworldwas a deterministically operatingworld, then
there wouldn’t be much scope, except in the initial conditions per-
haps. You could saywell you put all your uncertainties or whatever
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you liked in the initial conditions or you say reduction of the state
according to standard quantum mechanics comes about through
random effects. I don’t believe in standard quantum mechanics
because I believe that the reduction of the state iswhere the random-
ness comes in the Schrödinger equation. There is nothing random
in the Schrödinger equation. The Schrödinger equation describes
how the state evolves. It’s a deterministic equation, where’s the ran-
domness’ The randomness comes because you change your mind
about what describes the world. You say “whoops, I thought it was
the Schrödinger equation! No, no, it wasn’t”. It’s suddenly become
a density matrix. Where did that come from’ Well, because I’m
ignoring certain degrees of freedom in the world or something. It
doesn’t make any sense.
People have their way of fumbling away and getting probabilities
out of it. In my view, they’re completely wrong because despite the
fact that we have this really great very distinguished mathemati-
cian Von Neumann, I don’t know what he really thought. It’s very
strange; I wonder what they were really thought. I did talk to him
about this question. I think he didn’t have quite such a clear view of
what he thought. He certainly thought one viewwas that somehow
consciousness was what collapsed the wave function. But then, it
doesn’t tell you what consciousness is. Where does it come from?
So, you see, my view is turning that around and saying that con-
sciousness comes from collapsing of the wave function. But where
does that come from’ Does the free will give us non-deterministic
view? Does it make any sense? Don’t ask me, I can worry about
it and I probably will. It’s not clear that it’s deterministic. It’s not
even clear what that means. It’s not clear whether there is a con-
sciousness. Certainly, most of the collapse of the wave functions
are not what we would call conscious in the ordinary sense. I have
persuaded my colleague Stuart Hameroff who wanted to call all
collapses of thewave function, conscious. Our argumentwas to say
“no, no I call it proto-conscious”. That’s not really conscious. It’s the
building blocks out of which consciousness is constructed. Okay
well, that’s the view we take. But what does it mean to have this
building block. Is that building block somethingwhich is determin-
istic in some deep way that we don’t know’ I don’t know certainly.
We don’t know. It could be anything. It could be deterministic. I’m
saying it’s non-computable. That’s not deterministic in the normal
sense of this word. It’s something very subtle in physics.
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JJS & JK: You believe in a deep unity between mathematics and
physics, do you think they are, in a sense, the same?
RP: Yes, well it’s not the same; I think it would be a mistake to think
of them as the same and even the motivations are different. Still,
there is some overlap between the motivations. In mathematics,
you’re not constrained by having anything to do with the physical
world. And most of mathematics doesn’t have any direct physical
significance. I mean you know I have this picture which I often
drew with the three worlds: the world of mind, the mathematics
and the physical world and how they relate to each other. And
the picture was only a very small part of the world of mathematics
you actually find encompasses the action of the physical world and
only a small part of the physical has to dowith our conscious under-
standing. So, only a small part of conscious understanding has to
do with mathematics. So, it was a sort of irony or a paradox almost
but somehow how does this little small part encompass everything
in the next world and then the small part encompasses everything
in the next world and the small part encompasses everything in the
next one and I rather like that picture because it seems to indicate
a paradox.
JJS & JK: Do you think that the mathematical world is more funda-
mental and primary than that of physics?
RP: In a certain sense, but I’m not sure. I think I did have that view.
Perhaps yes, it’s sort of. I put it at the top which meant it is in a
certain sense more primary. But I was trying to make them more
on an equal footing in a way. So, I wasn’t trying to emphasize that
point and certainly most of mathematics sure it has its own exis-
tence. But the existence of that mathematics is of a different kind
from the existence of physical things, and only a small part of the
action of the mathematical world is found to have this direct rele-
vance to physics. And complex numbers are a very big important
part of that small part. So, the complex numbers are a small part
of the small parts if you like.
But nevertheless, they have an enormous implication with regards
to quantum mechanics. And then I was trying to extend that. And
I certainly was thinking about spin and I spent a lot of time trying
to encompass spin as a basic notion, but it really wasn’t enough.
And you had to have to go from the spinors to the twistors. So, you
need to extend them. I mean twistors are again a form of spinors,
but they are exactly not the spinors for the Lorentz group. They’re
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spinors for the conformal group. And then there’s another step, I
think in the last fewmonths, and I found satisfaction in that, which
is only, that you actually have another step which has the twistors,
youpair up a twistorwith a dual twistor and then youfind, they nat-
urally have a split octonion nature or a G2. This particularly strange
simple group is this G2 but the Lorentzian version which is G2. I
only learned this a few months ago by thinking about it. I sort of
thought about this puzzle for years but not really getting seriously
into it. And I realized that this is the quantized version of twistor
theory, but what I didn’t realize was that the algebra of the quan-
tized version of twistor theory has this G2 symmetry. It’s there; it’s
hiding there all the time!
JJS & JK: You don’t like the big and huge group. You prefer the
simple one.
RP: Yes, that’s absolutely right yes.
JJS & JK: In the Road to Reality, you use the idea of sophistication
when you consider complex numbers as the primary fabric of the
Universe, the founding element of twistor theory, and the argument
is based on two fundamental pillars:

i) the extraordinary precision of scientific theories formulated in
the language of mathematics and

ii) the dependence of the accuracy of physical theories on the
sophistication of the mathematical formalism used.

RP: You’re right exactly. It’s not just that mathematics is beauti-
ful or clever or even sophisticated. Let me mention again one big
area which is not an area which I have pursued. Which is the area
of string theory. The initial idea I always found it actually rather
beautiful. I liked the idea when I first heard about string theory.
But what I did not like is how you had to go up into these high
dimensions in order to make the theory work. Now you see in cer-
tain sense, people are very attracted by the mathematics of string
theory. But to me, this is going off in the wrong direction. And
it’s a bit hard to explain what I mean here. It’s in some sense as if
you’re forcing physics into mathematics.
It’s partly to dowith thisworld and only a small part of it seeming to
have to dowith the physicalworld and there’s a lot of very beautiful,
very sophisticated, very elegant powerfulmathematics which as far
as we know has almost nothing to do with the physical world.
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And I guess, this is true in string theory. You have ideas which can
influence many different areas of mathematics in ways which had
not been thought of before. And this is a very powerful idea. But
nevertheless, I don’t see its connection with the physical world.

It’s kind of they got lost. There may have been a connection orig-
inally with certain some of the ideas, may be Riemann surfaces
and so on, when you’re really at the basic beginnings of the idea
of strings. But it’s kind of gets departed from what at least can be
seen to be directly connected with physics. And so, I think that
there are too many people persuaded by the beauty in mathemat-
ics, which is there I’m sure, and to believe that physics has to fit in
with it because it’s so beautiful. And this is a dangerous position to
take. So that’s where I kind of diverge from where many people.
JJS & JK: Alain Connes has the idea that mathematics is inde-
pendent of Human Being. And even, he illustrated this with the
example of aliens: if we have to meet alien people, what we could
have for communication would be the numbers, because they have
the same atomic spectrum.
RP: Yes, I believe that. We have this paper which Vahe and I wrote,
which also appears in the European Journal of Theoretical Physics,
where we play with the idea that there might be communication by
very advanced civilizations in the previous aeon. And they could
send their signals. Which is completely crazy, but not so crazy, it
might even be true. In some way, we have no concept of at the
moment. There could be signals.
JJS & JK: What is your advice for the new generations?
RP: Very tricky one. You see, when people ask that sort of question
I tend to say: ‘do what interests you, do what excites you.’ That’s
fine, I guess, for people who are going to do really good work in
science. But it needs an awful lot of people doing pretty dreary
work. I mean a lot of calculations, that are done or under putting
things on computers okay, if you find that exciting, that’s good sure,
that’s very good.
You see, I wouldn’t find it exciting myself but that’s just my fault.
We need to have people who find that exciting and that’s very good
because that’s a lot of things where things go these days. You have
to see how to put a problem on a computer andmake the computer
do the hardwork. You understandwhat you’re doing, all the under-
standing is done by the human, but the calculations are done by the
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computer that’s fine. And if that’s what excites you, great, that’s
fantastic, that’s really good because that’s very important andwhat
will happen in science. It probablywouldn’t helpmemuch because
I would find that a bit dreary but that’s just my trouble. But peo-
ple who find that exciting are very important in the world perhaps
more important to science development.
I’m not sure that’s a tricky question because I think there is a danger
of getting wrapped up in the schemes and getting blinded to where
they have to be changed. I think this happens in quantum mechan-
ics. You see the theory works so beautifully well and you can do
so many things that you could never do before. That it makes you
think, it has to be right. And the people who try to argue there’s
got to be something wrong with it, somehow have to be dismissed
as cranks. Most of them are cranks, that’s the trouble.
It doesn’t mean that there isn’t something deep in what they’re
trying to do. But it’s just as well that most people don’t do that.
But you have to realize perhaps the limitations of the subject so to
see that there are limitations in quantum mechanics, it’s probably
rather important too.
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