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What Makes Mathematicians Believe
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Abstract. This paper considers the reasons mathemati-
cians give for making probabilistic judgments about
unproved mathematical statements, and discusses how
one might interpret and justify such judgments more
formally. Following Pólya, I argue that we update our
probabilistic judgments in a broadly Bayesianway, while
to explain what they mean in the first place, I argue
that they are referring not so much to the truth of the
statements as to the likely existence or otherwise of rea-
sons for them. The link between the two is provided
by a “no-miracle” principle, which says that a surprising
mathematical statement will not be true unless it is true
for a reason. This principle applies only to statements
that are sufficiently natural, so the paper also sets out cri-
teria for a statement to be more or less natural.

§ 1. — Introduction.

A feature of mathematics that marks it out from all other disci-
plines is that it has a formal notion of proof, whichmakes it possible,
at least in principle, to justify a mathematical statement not just
beyond all reasonable doubt, but beyond any doubt at all.(2) As
many people have commented, justifications as they appear in typ-
ical research articles are not formal proofs but more like blueprints
that are sufficiently detailed to convince experts that formal proofs
exist. Some of these blueprints are very complicated and use ideas

(1)This article is awritten version of two seminars I gave at the Collège de France.
(2)Unless one wishes to take the drastic step of doubting either some very basic

axioms or some very simple rules of deduction.
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that are understood by only very few mathematicians, so it can be
reasonable to be uncertain about whether they are in fact correct.
Nevertheless, there is a large body of mathematical knowledge that
is sufficiently simple and widely understood that we can be sure
that it will not be overthrown in the way that, say, Newton’s the-
ory of gravitation was overthrown by Einstein’s. There is also a
smaller but rapidly growing body of knowledge that has now been
completely formalized with the help of computers.

Because proofs have become the gold standard, at least for pure
mathematicians, in the sense that a statement is “accepted” if and
only if somebody has proved it, it is tempting to divide mathemat-
ical statements into three classes: definitely true, definitely false,
and don’t know. (One might also wish to divide the last class
further, into statements with proofs or disproofs that have not yet
been discovered, and statements that are undecidable.) However,
this is a very crude classification that does not give a complete pic-
ture of mathematical practice, since mathematicians have varying
degrees of belief in different unproved statements. For example,
they are extremely confident that Goldbach’s conjecture is true and
that π is a normal number, they are quietly confident but with not
quite 100% certainty that the Riemann hypothesis is true, they think
that almost certainly P 6=NP (though a few outliers think that this
confidence is misplaced), and think it is probably not possible to
factorize a large integer in subexponential time but would not be
unduly surprised if it turned out to be possible. (I shall discuss all
these examples in more detail later.)

It is a simple empirical fact that mathematicians make proba-
bilistic judgments about mathematical statements. They do not
actually assign precise probabilities to them, but they use words
and phrases like “probably”, “almost certainly”, “unlikely”, and
so on, and if pressed might even be ready to translate those into
odds that they would be prepared to accept in a bet. And yet this
fact raises many questions. A particularly basic one is what it even
means to say something like that a statement is “probably true”. A
second is a descriptive one: what causesmathematicians to bemore
confident in the truth of some unproved statements than others? A
third is whethermathematicians are behaving rationallywhen they
make the judgments they make. And a fourth is why mathemati-
cians make these judgments.

My focus in this article will be the second question, though it is
related to all the others. But before I get on to it, I would briefly
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like to tackle the fourth, since I believe that it has an easy answer,
though one that is also easy to overlook.

Contrary to what one might at first think, assessing the like-
lihood of as yet unproved statements is not just something that
mathematicians do for amusementwhen they are talking shopwith
colleagues. Rather, it is a fundamental part of the research process.
Solving a mathematics problem is extremely difficult and requires
a big investment of time. In order to use one’s time wisely, one has
to make judgments about which statements are likely to be true,
which are likely to have easy proofs andwhich not, which are likely
to have interesting consequences, and so on.

That is not to say that trying to prove a false statement is always
a complete waste of time. For some problems there is virtually no
difference between trying to find a proof and trying to find a coun-
terexample, since a good way to find a proof of a true statement is
to try to disprove it and to examine why one’s attempts fail. But for
some problems that approach gets you nowhere. Even then it may
be useful to try to prove a false statement. For example, early in my
career I spent a long time trying to prove a theorem about Banach
spaces that would have solved a famous open problem. I failed in
my attempt, and later a highly ingenious counterexample was dis-
covered. However, my timewas not at all wasted: some of the ideas
I had were extremely useful to me for solving other problems.

Nevertheless, the point remains that judging the likely truth of a
statement is a very important skill for amathematician. So far I have
discussed entire research problems, but probabilistic judgments
become even more important when they are part of the process of
solving such problems. Typically, in order to solve a problem, one
must use a top-down approach, which will involve a lot of guess-
work. For instance, if one is trying to prove that P =⇒ Q, one
often tries to identify a statement R for which one can prove that
P =⇒ R and that R =⇒ Q. There may be several candidates, in
which case onemust decidewhich one to try first, and havingmade
the decision onemust continually think about whether and at what
point to abandon that line of attack and try another. In general, to
be successful at research one must search efficiently for proofs, and
that requires a sophisticated search strategy in which probabilistic
judgments, whatever they might be, play an essential role. For this
reason, understanding how such judgments are made and to what
extent they are justified is not merely of philosophical interest: it is
also of practical interest to mathematicians.
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The rest of the paper is organized as follows. I begin with an
informal discussion of several major open problems and some of
the reasons mathematicians have given for what they believe the
answers to be. I follow this with a discussion of how mathemati-
cians update their beliefs in the light of changes to what they know:
some basic rules for this were put forward by Pólya, which, as
David Corfield has pointed out, it is natural to regard today as a
form of Bayesian reasoning. In the following section I try to explain
what probabilistic judgments aboutmathematical statements could
possibly mean given that their truth values (in so far as they have
truth values) are fixed. For this purpose I formulate two closely
related principles that I call the “no-coincidence principle” and the
“no-miracle principle”. This is followed by a discussion of natural-
ness of mathematical statements, which I argue is central to any
understanding of how we make probabilistic judgments. Issues
arise here that are very similar to those raised by Goodman in his
famous “new riddle of induction”. In order to deal with Goodman-
type paradoxes I formulate another basic principle that I call the
“nice-formula principle”. In the next section I argue that natural-
ness in mathematics is closely related with levels of abstraction —
roughly speaking, the more it is possible to formulate a statement
or definition without resorting to constants (as opposed to param-
eters that vary according to context), the more natural it is. I finish
with a brief summary of the argument put forward over the course
of the preceding sections.

§ 2. — Some examples of unproved statements.

In this section I shall look at several major unsolved mathemati-
cal problems. For some of them there are answers that are widely
believed to be true, while for others there is much greater uncer-
tainty. I shall discuss the kinds of reasons thatmathematicians give,
or in some cases actually have given, for their assessments of these
problems. In later sections I shall try to draw some general conclu-
sions from these and other examples.

2.1. Goldbach’s conjecture. Goldbach’s conjecture is the asser-
tion that every even number greater than 4 is the sum of two odd
primes. For example, 1984=1979+5, and both 1979 and 5 are prime
numbers. Goldbach’s conjecture is one of the most famous open
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problems in number theory, but most mathematicians, at least if
they have thought about the problem for a bit, are extremely confi-
dent that it is a true statement. What explains this confidence?

This question was considered in detail in an article by Alan
Baker(3) on the use of scientific induction in mathematics.
Goldbach’s conjecture has been verified for all even numbers up
to 4,000,000,000,000,000,000. Baker asked to what extent this kind
of verification increased mathematicians’ confidence in a state-
ment, and to what extent it should increase their confidence, and
concluded that in both cases the answer was not much.

One of the reasons he gave for this conclusion was that for any
fixed n, the integers smaller than n are “minuscule”, in the sense
that almost all integers are far bigger. To a mathematician, this
objection has force only if one has reason to suspect that the minus-
cule (in this sense) integers are not representative, and that varies
from problem to problem. For instance, if I were to learn that the
maximum possible value of a simple parameter associated with n-
vertex graphs was n − 1 for all n up to 10, then I might well regard
that as very convincing evidence that it was always n− 1, reasoning
that any behaviour that would lead to a more complicated function
would almost certainly have shown up by then. But there are exam-
ples in number theory of phenomena that show up only for very
large numbers, so in general I would want to check further for a
problem like Goldbach’s conjecture.

Probably the reaction of most mathematicians, if all they
knew about Goldbach’s conjecture was that it was true up to
4,000,000,000,000,000,000, would be to think that it is probably true,
but that it might be one of those funny problems, which are quite
rare but which definitely exist, where the smallest counterexample
is very large. However, as Baker pointed out, we actually know a lot
more than this. Confidence in the truth of Goldbach’s conjecture
was greatly increased when tables were produced that showed not
just that every even number up to a certain point was a sum of
two odd primes, but also in how many ways that was the case. This
revealed that, despite some fluctuation, on average the number of
ways steadily increased as the even number increased. Therefore,
small even numbers, to the extent that they are unrepresentative,
are unrepresentative in the right direction: the evidence suggests
that if you take a very large even number, then not only will it be

(3)Is there a problem of induction for Mathematics? in M. Potter (ed.), Mathematical
Knowledge, Oxford University Press, pp. 57-71 (2007)
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expressible as the sum of two primes, but it will be expressible in
a huge number of ways.

However, Baker did not give the whole story, as there is an
even stronger reason to be impressed by these tables, one that is
so compelling as to leave virtually no room for doubt in the truth
of Goldbach’s conjecture.

A striking fact about the primes is that they occur somewhat spo-
radically, behaving in many ways as though they have been chosen
randomly, subject to certain constraints. A sign of this is that all
attempts to produce a non-artificial formula for the nth prime have
failed, to the point where no mathematician seriously believes that
such a formula exists (which is of course another example of a prob-
abilistic judgment).

What does “as though they were chosen randomly” mean? One
of the most famous theorems in mathematics, the prime num-
ber theorem proved independently by Hadamard and de la Vallée
Poussin, states that the number of primes up to n is approximately
n/ log n, so to a first approximation one might say that the primes
look like a set that you would obtain if for each n you were to
choose it with probability 1/ log n, making all choices indepen-
dently. However, such a set would contain a roughly equal number
of even and odd numbers, which is certainly not the case for the
primes. A more accurate random model of the primes is to choose
each n as follows. If it has a small divisor such as 5 (the limit of
what counts as small grows slowly with n), then do not choose
n. Otherwise, choose n with a probability somewhat larger than
1/ log n (which can be calculated precisely) to compensate for the
numbers that have been discarded.

This model can be used to predict, for a given large even num-
ber n, the approximate number of ways of writing n as a sum of
two primes. For instance, if n is a multiple of 3 and p is a prime not
equal to 3, then p is not a multiple of 3, which guarantees that n− p
is also not amultiple of 3, so p’s being prime is positively correlated
with (n − p)’s being prime. By contrast, if n is of the form 3m + 1,
then the only way for p and n − p both to avoid being multiples
of 3 is if p is of the form 3m + 2, which is true for only about half
of all primes. With this kind of reasoning one ends up hypothesiz-
ing that on average multiples of 3 can be written as a sum of two
primes in about twice as many ways as non-multiples of 3. More
generally, one canwrite down an approximate formula for the num-
ber of ways that n should be representable as a sum of two primes,



M×Φ vol. 1 What Makes Mathematicians Believe Unproved Mathematical Statements? 63

in terms of which small factors it has. And this formula turns out
to be remarkably accurate. The tables show not just that large even
numbers can be written in many ways as a sum of two primes, but
that they can bewritten in almost exactly the number of ways one would
expect if the random model of primes is a good one.

Why should this increase our confidence? The answer is twofold.
First, the experimental evidence is now confirming a significantly
more general statement (namely that the random model of the
primes makes accurate predictions). The more general a statement
is, the more diverse opportunities it has to be false, and therefore
the more impressed one is when it is confirmed. Secondly, the
predictions made by this more general statement are much more
precise, and therefore again it is correspondingly easier for the pre-
dictions to fail, and therefore more impressive when they turn out
to be correct.

2.2. The normality of π. A positive real number x is said to be nor-
mal if its decimal expansion looks random in the sense that every
sequence of digits occurs with the frequency one would expect if
the digits had been chosen at random. More precisely, suppose
that the decimal expansion of x is x0.x1x2x3x4 . . . , where x0 is a
non-negative integer and each of x1, x2, . . . is an integer between
0 and 9. Then given any sequence of digits, such as 137, and any
positive integer n, one can look at all the sequences xixi+1xi+2 with
1 ⩽ i ⩽ n and count how many of them are the sequence 137. If
the xi have been chosen randomly, then each triple xixi+1xi+2 has
a 1/1000 chance of being 137, so one would expect the proportion
of triples that give 137 to converge to 1/1000 as n tends to infin-
ity. The number x is said to be normal if that happens for every
small sequence: that is, each digit occurs with a frequency that con-
verges to 1/10, each pair of digits with a frequency that converges
to 1/100, and so on.

It is widely believed that π is a normal number, which would
have amusing consequences such as that your date of birth must
occur somewhere in its decimal expansion. However, proving the
normality of π is a wide open problem— it may even be an unprov-
able statement. To give an idea of our level of ignorance, it is not
even known that there is not some point beyond which all digits
are equal to 0 or 1, which would be an extremely strong refutation
of the conjecture that π is normal.
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So why do we believe that π is normal? Certainly the experi-
mental evidence is quite convincing: if one examines a table of the
first thousand digits of π, say, they really do look pretty random,
and statistical tests have been carried out much further than this
without throwing up any anomalies. Furthermore, there is no par-
ticular reason to think in this context that the “minuscule” number
of digits we can examine form an unrepresentative sample.

If pressed further, I myself would use the following two-step
argument.

1. If π is not normal, then there will have to be some reason for
any bias that might occur.

2. The kinds of reasons I can imagine are almost all ones that
would lead to a bias showing up very clearly within the first
million digits.

This argument falls far short of a proof, of course. When I said that
there would have to be a reason for any bias, I did not rigorously
rule out the possibility that π might “just happen” to have only
finitely many 7s in its decimal expansion. But all my mathematical
experience tells me that if such a remarkable phenomenon were to
occur, there would in fact be an explanation for it.

The second part of the argument is slightly less convincing, since
there are some notorious examples of phenomena that show up
only for surprisingly large integers, despite having very natural
explanations. One is the remarkable fact that

eπ
√

163 = 262537412640768743.99999999999925 . . . .

It would be very reasonable to suppose, after calculating the expan-
sion of eπ

√
163 up to twelve decimal places and obtaining the answer

262537412640768743.999999999999, that in fact it is equal to the
integer 262537412640768744, and the justification would be very
similar: it is hard to imagine a reason for a pattern like this that
continues for twelve decimal places without continuing for ever.

However, there is such a reason, and in fact it is not all that
strange, though it depends on some advanced number theory. It
turns out that one can expand eπ

√
163 in a natural way as a series

where the first two terms are (640320)3 and 744, and all remaining
terms are extremely small, and that is why one obtains a number
that is very close to an integer without actually being an integer.

There are many examples throughout mathematics of simply
defined numbers that turn out to be very large (and there are even
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theoretical reasons, related to Gödel’s theorem, to expect this to be
the case), so the mere fact that a pattern has been observed to con-
tinue for a long time is not always overwhelming evidence in favour
of the hypothesis that it continues for ever. However, there is a dif-
ference between the example of eπ

√
163 and the hypothetical example

of a failure of π to be normal. In the first case, there is a pattern that
lasts for a long time before coming to an end. But for π to fail to be
normal, one would require the opposite phenomenon: a pattern that
only starts after a long time. The decimal expansion of π has been cal-
culated up to 62.8 trillion digitswithout showing any sign of a pattern,
and it is very hard to imaginewhat a proof could conceivably look like
that would establish that some bias crept in after that point.(4)

2.3. R(k, k)1/k tends to a limit. Acentral theorem in combinatorics,
Ramsey’s theorem, asserts that for every k there exists an n such
that if all the edges of a complete graphwith n vertices are coloured
either red or blue, then there must be k vertices entirely linked by
red edges or k vertices entirely linked by blue vertices. The small-
est such n is denoted R(k, k). It is known that 2k/2 ⩽ R(k, k) ⩽ 4k.
These upper bounds are very far apart, but it is a major open prob-
lem to improve substantially on either of them.

It is tempting to assume that there must be some constant C,
lying between

√
2 and 2, such that R(k, k) is roughly equal to Ck

for all k. Plausible candidates for C are
√

2, 2, and 4. To be more
precise about this assumption, what seems very likely to be true is
that there is some C such that for any α < C and β > C, R(k, k)
lies between αk and βk when k is sufficiently large. A more concise
way of saying this is to say that the quantity R(k, k)1/k converges to
a limit C as k tends to infinity.

Almost all combinatorialists are (if my feelings are anything to
go by) confident that this is true. The alternative is that as k gets
larger and larger, the Ramsey number R(k, k) “oscillates”, in the
sense that there are two constants A < B such that infinitely often
R(k, k) ⩽ Ak and infinitely often R(k, k) ⩾ Bk.

(4)Strangely enough, there might be more hope of proving that the base-16
expansion of π is not normal, owing to a remarkable formula of Bailey, Borwein
and Plouffe that enables that expansion to be calculated extremely rapidly.
However, this possibility has been investigated and the best one can say at the
moment is that their formula reduces the question of the normality of π to a
simpler-looking but still wide open question, the probable answer to which would
imply that π is normal even in base 16.
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Why does this alternative possibility seem so unlikely? One rea-
son is that there are many examples of exponential growth rates
that occur naturally and are known not to oscillate in this sense,
and none (or none that I can think of) that do oscillate. However,
this is not a completely convincing argument, because the examples
in question, of functions f such that f (k)1/k converges, are often
examples for the same reason. A function is called submultiplica-
tive if f (ab) ⩽ f (a) f (b) for every a and b, and supermultiplicative if
f (ab) ⩾ f (a) f (b) for every a and b. It is not too hard to prove that
if a function f is either submultiplicative or supermultiplicative,
then f (k)1/k converges to a limit, and this is the reason that many
functions that occur naturally have this property. However, the
function f (k) = R(k, k) is not submultiplicative, and it is not obvi-
ously supermultiplicative either (though so few Ramsey numbers
are known that one cannot rule out the possibility), so if R(k, k)1/k

converges it will probably have to be for a different reason.
So why, despite there being no particular reason to suppose

that R(k, k) is submultiplicative or supermultiplicative, are math-
ematicians so confident that R(k, k)1/k converges? This seems to be
another case where, pace Alan Baker, there is no reason to suppose
that minuscule natural numbers are unrepresentative, so if R(k, k)
is about Ck for some very large (by human standards) k, then prob-
ably R(k, k) is about Ck for all larger k as well.

This argument raises questions in its turn, since one could
replace Ck by another function D(k) defined by a formula
such as (2 + cos(π log2 k)/10)k, which I have designed so that
D(k) = (2.1)k when k is equal to an even power of 2 and
D(k) = (1.9)k when k is equal to an odd power of 2. If it could be
established that R(k, k) was approximately equal to D(k) for some
very large k, would that suggest that R(k, k) was approximately
D(k) for all larger k? Clearly not, but why not?

The answer must be that in some way the hypothesis that
R(k, k) ≈ D(k) is an artificial one, which leads to the question of
how to distinguish between natural and artificial hypotheses. This
is a mathematical version of Goodman’s new riddle of induction,
to which I shall return later.

2.4. The average end-to-end distance of a two-dimensional self-avoiding
walk. A two-dimensional self-avoiding walk of length n is a path
of length n in the two-dimensional integer grid Z2 that starts at
(0, 0), moves at each step to one of the four neighbouring points,
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where the neighbours of (x, y) are (x + 1, y), (x − 1, y), (x, y + 1)
and (x, y − 1), and do not visit any point more than once. Despite
this simple definition, self-avoiding walks are very hard to analyse,
and many basic questions about them are still unanswered.

One of these is to determine the average end-to-end distance of
an n-step self-avoiding walk chosen at random from all such walks
— that is, to work out how far, on average, the last point of the walk
is from (0, 0). It is known to be at least n1/4 and a slight improve-
ment to the trivial upper bound of n is also known. But that leaves
a very large gap.

However, mathematicians are extremely confident that the aver-
age is in fact around n3/4, and have been so for a long time. Why
is this?

The reason is that there are arguments in favour of this conclu-
sion that fall short of being rigorous proofs but that are nevertheless
convincing. Pure mathematicians might call them heuristic argu-
ments, but for many physicists they are completely satisfactory.
They belong to a class of arguments where certain mathematical
operations are carried out that are “invalid” (one famous exam-
ple being to establish a formula that depends on dimension, which
has to be an integer, and then to let the dimension “converge to
zero”), despite which, they give precise predictions that are then
confirmed by experimental evidence. This evidence can then be
regarded as confirming not just the particular estimate of the aver-
age end-to-end distance of a self-avoiding walk, but also the more
general hypothesis that there is some explanation, yet to be uncov-
ered, for why physicists’ methods seem to work so well.

Over the years, this confidence, which was already high, has
become even higher after remarkable work of puremathematicians
that proves the n3/4 estimate, as well as many related estimates
that had been predicted by physicists, subject to a general hypoth-
esis known as conformal invariance — a plausible hypothesis that
asserts that themacroscopic behaviour of a self-avoidingwalk (and
several other related models) has a certain kind of symmetry. The
conformal invariance hypothesis plays a role here that is somewhat
similar to the role played for Goldbach’s conjecture that the random
model of the primes makes accurate predictions, with two notable
differences: the conformal invariance hypothesis is a more precise
statement, and the fact that one can deduce from it precise informa-
tion about the behaviour of self-avoiding walks is far from obvious.
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2.5. P versus NP. The P versus NP problem was formulated in
1971 by Stephen Cook, and independently in 1973 by Leonid Levin,
and rapidly gained the status of being one of the most fundamental
and important unsolved problems in mathematics and theoretical
computer science. The basic object of study in theoretical com-
puter science is the notion of an algorithm, and a basic question is
whether, for a given computational task, there is an algorithm that
can perform the task efficiently. A useful definition of “efficiently”
is that of a polynomial-time algorithm, which means an algorithm
for which there exists a polynomial P such that if the input to the
algorithm has size n, then the time taken by the algorithm is at
most P(n). For example, standard long multiplication of two n-
digit numbers is efficient in this sense, as you have to do roughly
n2 simple arithmetical operations. (There are also cleverer meth-
ods that are significantly more efficient, the current record being
an algorithm that takes time closer to n log n.)

To prove that there is an efficient algorithm for a given task, all
you have to do is find such an algorithm. What appears to be far
harder is to prove that there is not an efficient algorithm for some
task. This general problem was brought into sharp focus by Cook
and Levin, who observed that there is a large class of important
computational problems that are all of equivalent difficulty in the
following sense: if you can find a polynomial-time algorithm for
one of them, then you can use it to create a polynomial-time algo-
rithm for any other one.

This class of problems is closely related to a class of problems
called NP (which stands for “non-deterministic polynomial time”).
Loosely speaking, a problem belongs to NP if there is a polynomial-
time algorithm for checking whether a proposed answer is correct.
For example, an important problem in cryptography is the follow-
ing: you are given a product n of two large prime numbers p and q
and your task is to determine what p and q are. Nobody knows of
an efficient way to do this, but if you are given two numbers p and
q, then you can use long multiplication to check efficiently whether
pq really does equal n.

The big unsolved problem is whether P equals NP. That is, if
a computational task has the property that checking whether an
answer is correct can be done efficiently, does that mean that find-
ing the answer can also be done efficiently? The factorization
example suggests that the answer is probably no: there just seems
to be no reason for finding an answer to be anything like as easy as
checking that an answer is correct once found.
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Cook and Levin observed the remarkable fact that many natural
problems in NP are what we call NP-complete, which means that if
you can solve one of these problems then you can solve all prob-
lems in NP. One of the most famous such problems is the travelling
salesman problem: you are given a collection of towns, and roads
linking those towns, and the problem is to determinewhether there
is a route that visits each town exactly once before returning to its
starting point. This belongs to NP, since if somebody shows you a
route, you can easily check whether it visits each town exactly once.
Much less obviously, it is an NP-complete problem, which means
that if there is an efficient method for determining whether such
a route exists, then that method can be converted into an efficient
method for any other problem in NP. For example, it could be con-
verted into a method for factorizing products of two large prime
numbers. (By contrast, the factorization problem itself, though in
NP, is almost certainly not NP-complete.)

The fact that there are many NP-complete problems and that
finding an efficient algorithm for just one of themwould prove that
P=NP might seem to tip the balance back in favour of P and NP
being equal after all. But that is not how mathematicians see it. A
typical view, which I share, is that P and NP are almost certainly
not equal, but that the level of certainty is not quite as high as it
is for the other problems I have discussed so far. Rather than for-
mulating my own reasons for this view, I shall leave that task to
the well-known and philosophically inclined theoretical computer
scientist Scott Aaronson. In an article entitled “P ?

=NP” he writes
the following.

To my mind, however, the strongest argument for
P 6=NP involves the thousands of problems that have
been shown to be NP-complete, and the thousands of
other problems that have been shown to be in P. If just
one of these problems had turned out to be both NP-
complete and in P, that would’ve immediately implied
P = NP. Thus, we could argue, the P 6=NP hypothesis
has had thousands of chances to be “falsified by observa-
tion.” Yet somehow, in every case, the NP-completeness
reductions and the polynomial-time algorithms “mirac-
ulously” avoid meeting each other — a phenomenon
that I once described as the “invisible fence”.
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He then goes on to mention a particularly striking example of this
invisible fence in action, related to a central example of an NP-
complete problem, called 3-SAT. An instance of 3-SAT is a collection
of variables x1, . . . , xn, each of which can take the value True or
False, and also a collection of “clauses”, each of which is the OR of
three variables or their negations. For example, a possible clause is
x2 ∨¬x5 ∨ x8, which is true if and only if either x2 is true or x5 is false
or x8 is true. The problem is to determine whether there is a choice
of values for the variables that makes all the clauses in the given
collection true. This problem is a central example, because many
proofs of NP-completeness proceed by showing that a problem can
be reduced to 3-SAT, and since 3-SAT is already known to be NP-
complete, that shows that the given problem is also NP-complete.

In the absence of an efficient algorithm for solving 3-SAT, one can
set one’s sights a little lower and try to find an efficient algorithm that
will find an assignment of values to the variables thatmakes asmany
of the clauses true as possible. And an algorithm is known that will
find values that make approximately 7/8 of the clauses true.(5)

A deep result of Johan Haståd shows that unless P=NP, one can-
not do better than this. In other words, for any fraction α greater
than 7/8, if there were an efficient algorithm for finding an assign-
ment that satisfies at least a proportion α of the clauses, then P
would equal NP. In other words again, the problem of finding a sat-
isfying assignment for a proportion α of the clauses is NP-complete:
the invisible fence appears at exactly 7/8.
2.6. The Riemann hypothesis. The Riemann hypothesis is regarded
by many as the single most important unsolved problem in mathe-
matics (though experts in number theory will often qualify this by
pointing out that for many applications the Riemann hypothesis on
its own is insufficient and what is needed is a more general form of
it). Like the P versus NP problem, it is one of the Clay Millennium
Problems, for which a million dollars is offered for a solution. It
states that the zeros of the Riemann zeta function, which is defined
for complex numbers with real part greater than 1 by the formula
ζ(s) =

∑∞
n=1 n−s and on the rest of the complex plane apart from 1

by analytic continuation, are all either “trivial zeros” that occur at
negative even integers or have real part equal to 1/2.

(5)It is even possible to say very roughly how it works. First note that if you
choose the values at random, then each clause has a 7/8 probability of being true.
But there is also a known derandomization procedure that can convert this simple
observation into a deterministic algorithm.
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The general attitude amongst experts towards the Riemann
hypothesis is that there are certainly arguments that support the
belief that the Riemann hypothesis is true, but there are also argu-
ments against it, with the result that opinions vary, and while most
mathematicians (or at least this is my impression) think it is proba-
bly true, they certainly do not rule out the possibility of its being
false.

One argument in favour of it is that it has been checked with the
help of computers that the imaginary part of any counterexample
would have to be larger than a very large number that has steadily
increased over the years and currently stands at about 3 × 1012.

A second argument is that there is something very natural about
the statement. A sign of this is that it has many equivalent formula-
tions that look very different. One of these is related to the heuristic
principle mentioned earlier in connection with Goldbach’s conjec-
ture, namely that the primes are distributed as randomly as they
can be given certain obvious constraints. As mentioned earlier, the
prime number theorem asserts that the density of primes close to n
is approximately 1/ log n. The Riemann hypothesis is (as Riemann
himself showed) equivalent to the statement that the error term in
this approximation is not much bigger than log n/

√
n, which is the

sort of error term onewould expect if onewere choosing the primes
according to the random model mentioned before.

In an introduction to the Riemann hypothesis for the Clay
Millennium Prizes, the famous analytic number theorist Enrico
Bombieri, wrote a section entitled “Evidence for the Riemann
hypothesis”. He mentioned the computational evidence (which
at the time was less advanced than it is today), but also a subtler
argument, which is that there are reasons to believe that a counterex-
ample, if it exists, should be in the vicinity of a number 1/2 + it for
which |ζ(1/2 + it)| is particularly large. Such peaks are known to
exist, but are also very infrequent, which raises the possibility that
there is very large counterexample but no smaller one. The fact
that this possibility is at least imaginable would seem to make the
computational evidencementioned above less persuasive. However,
Bombieri went on to mention that AndrewOdlyzko, one of the lead-
ing experts on computation of zeros of the zeta function, had looked
at zeros in regions where counterexamples would be more likely to
be found (for instance, he had found 175 million consecutive zeros
with imaginary parts around 1020) and not found any. Thus, the
Riemann hypothesis had in fact passed more stringent tests.

http://www.claymath.org/sites/default/files/official_problem_description.pdf
http://www.claymath.org/sites/default/files/official_problem_description.pdf


72 T. Gowers M×Φ vol. 1

Other arguments given by Bombieri are that there are results
showing that zeros with real parts that are not close to 1/2 are rare,
and also results showing that at least 40% of the zeros have real part
equal to 1/2. At first sight, this may not seem like very convincing
evidence: why could it not be the case that a certain proportion of
zeros have real part 1/2 but not all of them? The answer to this
is quite interesting. The zeta function arises very naturally, as I
have already stressed, so one would expect that the set of zeros
of the zeta function would also look natural. But in that case one
would expect either that they would all be on the critical line (that
is, the vertical line of complex numbers of real part 1/2) or that they
would have real parts thatwere scattered around 1/2 in a somewhat
random-like way. It is much harder to conceive of a natural set that
would be largely, but not completely, confined to the critical line.(6)

A final and important reason is that the Riemann hypothesis
is now just one of a large number of analogous statements about
different kinds of “zeta function”, some ofwhich are not open prob-
lems but major theorems. This raises the possibility of proving the
Riemannhypothesis by considering classes of functions andnot just
one isolated function — a technique that has been very fruitful in
much of mathematics. (There are also some analogues that turn
out to be false, but they are not sufficiently closely related to the
Riemann zeta function to dash this hope.) It also raises the pos-
sibility of using another proof-finding technique, namely analogy
construction: one looks at the proofs for the other zeta functions
and tries to solve problems of the form “This zeta function is to the
Riemann zeta function as this element of the proof is to what?” and
in that way one hopes to build up a proof. Bombieri writes, some-
what cautiously,

In our opinion, these results in the geometric setting can-
not be ignored as not relevant to the understanding of
the classical Riemann hypothesis; the analogies are too
compelling to be dismissed outright.

Another mathematician who is on record as saying that he
believes strongly in the truth of the Riemann hypothesis is Peter

(6)I did not fully appreciate this point until, quite by chance and after having
written a first draft of this article, I overheardmy colleagueAledWalker explaining
over lunch to a non-mathematician why he believed the Riemann hypothesis. He
gave this reason as the one he found most convincing, so I asked him why, and he
responded with something like the argument above.
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Sarnak. In an interview in 2012 he mentions two points that back
up his view (though he doesn’t say that explicitly). One is that
of the huge number of interesting consequences that have been
discovered of the Riemann hypothesis, a significant number have
subsequently been proved by methods that avoid appealing to it.
Thus, rather like the statement that P 6=NP, it makes non-obvious
predictions, several of which have now been rigorously confirmed
and none of which have been disproved. His second reason (also
alluded to by Bombieri) is that there is a fascinating connection
between the distribution of the zeros of the Riemann zeta function
and the distribution of the eigenvalues of a random matrix. The
latter is quite well understood, and has led to predictions about
the former that would have been impossible to guess, and which
have been strongly supported by computational evidence. Thus, as
with non-rigorous arguments about self-avoiding walks, one has
the feeling that “something is going on” even if it is not yet fully
understood.

Andrew Odlyzko’s view after his computational work is com-
pletely agnostic: he thinks that the Riemann hypothesis could be
true and recognises that there is evidence in favour of it, but would
not be especially surprised if there turned out to be a large coun-
terexample (which Bombieri seems far less willing to countenance,
saying that it “would create havoc in the distribution of prime num-
bers”). Some clue as to the reason for his attitude can be found in
an unpublished paper where he writes,

The main conclusion that can be drawn from the data
in this paper is that in many respects the zeta function
reaches its asymptotic behavior slowly, so that even the
neighbourhood of the 1020th zero does not represent
what happens much higher.

He then goes on to give some idea of why this slow convergence
occurs.

2.7. The difficulty of factorizing large integers. Modern cryptog-
raphy, and in particular internet security, rely heavily on protocols
that would be insecure if integer factorization turned out not to be
hard. And while it is widely believed that the problem is indeed
hard, that belief is nowhere near as strong as our belief that P 6=NP.
The reason for this is connected with a fact that I mentioned earlier,
which is that although the problem belongs to NP — if you give

http://www.asiapacific-mathnews.com/02/0203/0030_0033.pdf
http://www.dtc.umn.edu/~odlyzko/unpublished/zeta.10to20.1992.pdf
http://www.dtc.umn.edu/~odlyzko/unpublished/zeta.10to20.1992.pdf
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me a factorization, I can check easily whether it is correct — it is
not thought to be NP-complete. Let me briefly explain the reason
for this.

First, one needs to know that search problems, where one is
asked to find an object with certain properties, are closely related
to corresponding decision problems, where one is merely asked to
determine whether the answer to a certain question is yes or no.
In our case, the search problem is to find a factorization of a given
large integer n. The corresponding decision problem is to deter-
mine whether n has a factor less than some given k.

Clearly if one can solve the search problem, one can solve the
decision problem. But the reverse is also true: if one has an effi-
cient algorithm for determining whether n has a factor less than
any given k, one can play a game of twenty questions, rapidly nar-
rowing down the range in which there must be a factor until one
finds it exactly.

As with the search problem, the decision problem is said to
belong to NP if the answer can be demonstrated to be correct in
polynomial time. That is clearly the case here: if you want to con-
vince me that n has a factor m that is less than k, you just have to
exhibit m and do a routine calculation to show me that n really is a
multiple of m (as well as demonstrating that m < k, which is even
easier).

However, something else happens here that is much rarer: if n
does not have a factor less than k, you can also convince me of that
in polynomial time. The basic idea is that you show me a complete
prime factorization of n: that is, you tell me that n = p1 p2 . . . pr for
some prime numbers p1, . . . , pr, and point out that all the pi are at
least as big as k. Of course, that does not convince me unless I am
sure that the pi are indeed prime numbers. It is not at all obvious
that there is a quick way of convincing me that a given number is
prime, but it turns out that such methods do exist. One method
is to use a breakthrough result of Manindra Agrawal, Neeraj Kayal,
andNitin Saxena, who showed that one could determine in polyno-
mial time whether a number n is prime. (Here “polynomial time”
means that the time taken is bounded above by a polynomial func-
tion of the number of digits of n.) It was previously known that
determining primality was in NP — the proof depended on the
number-theoretic fact that if p is prime, then there will be a number
a such that ap−1 is congruent to 1 mod p and no smaller power of
a is congruent to 1 mod p.
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A decision problem of the form “Does there exist x such that
P(x)?” is said to belong to co-NP if a negative answer can be
checked in polynomial time. So the decision version of the integer
factorization problem belongs both to NP and to co-NP, in strong
contrast tomost naturalNPproblems and in particular to all known
NP-complete problems (at least as far aswe can tell— if P=NP then
all these distinctions collapse).

Why does this cause us to believe that integer factorization is not
NP-complete? Because that would have the extraordinary conse-
quence that NP=co-NP. For example, given an instance of 3-SAT
— that is, a collection of clauses of size 3 — we would be able to
find a pair of integers n and k such that n has a factor less than k
if and only if the collection of clauses can be simultaneously satis-
fied. Since integer factorization is in co-NP, that would mean that
if the collection of clauses cannot be simultaneously satisfied, there
would be a way of demonstrating that fact, by demonstrating that
n does not have a factor less than k. So 3-SAT would also belong to
co-NP (as would all other problems in NP by a similar argument).

Thus, problems that belong both toNP and to co-NP are believed
to be “easier” than NP-complete problems. This reduces our confi-
dence that integer factorization is hard.

There are three more facts that reduce our confidence still fur-
ther. One is that although one might think that to factorize a
product n of two large primes there is not much option beyond a
brute-force search for the smaller of the two primes, which would
take time roughly exponential in the number of digits of n, that
is not in fact true: there are methods that are far from obvious
that use advanced number theory and take a time that is exponen-
tial in something closer to the cube root of the number of digits.
Though that is still a rapid growth rate, which makes the methods
impractical for numbers with more than a few hundred digits, it is
still a big improvement on the naive approach, and demonstrates
that there can be algorithms that work in clever and unexpected
ways. The second fact is that Peter Shor famously showed that a
quantum computer can factorize large integers in polynomial time.
While that is not strong evidence that a classical computer can do
the same (in fact, it is normally taken as evidence of the additional
power of quantumcomputers), some of the number-theoretic tricks
that are used to prove the result are further demonstrations of
the fact that this is a field where there are unexpected ideas to
be found. (Another example of this is the astonishing primality
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test mentioned earlier.) The third fact is that another problem that
famously belongs toNP but does not appear to beNP-complete, the
so-called graph isomorphism problem, was shown by László Babai
in 2017, by a remarkable and unexpected argument, to be soluble
in “quasipolynomial” time— that is, much faster than a typical NP-
complete problem.(7) This demonstrates that at least some natural
NP problems that seem hard can turn out, for highly non-obvious
reasons, to be very much easier than NP-complete problems. This
increases our perception of the likelihood that factorizing could be
such a problem.

§ 3. — Some general reasons for finding mathematical
statements plausible.

A common thread that runs through many of the justifica-
tions discussed in the previous section is what I think of as
pseudo-Bayesian arguments. That is, one starts with some prior
belief about the likelihood of a mathematical statement being true,
does a suitable experiment, and updates one’s beliefs accordingly.
What makes this process pseudo-Bayesian rather than genuinely
Bayesian is that, as mentioned earlier, the probabilities in question
do not take numerical values — rather, they are vaguer notions
such as “extremely likely” or “certainly possible”, which mathe-
maticians might or might not be willing to convert into very rough
estimates such as “with probability at least 70%”. (For example, I
am ready to stick my neck out and say, very much as a non-expert,
that I would give the Riemann hypothesis at least a 90% chance of
being true.)

This kind of reasoning is discussed in detail by George Pólya
in his 1954 book Mathematics and Plausible Reasoning Volume II:
Patterns of Plausible Inference andmore recently taken up again by
David Corfield in his article Bayesianism in Mathematics, from the
book Foundations of Bayesianism, edited by David Corfield and
Jon Williamson. One pattern of reasoning Pólya mentions is, for
example, the following. Suppose youwish to assesswhether a state-
ment A is true, and for the moment your level of confidence in A is
medium. Now suppose you spot that A has a consequence B that

(7)A function f (n) is said to be quasipolynomial if it is bounded above
by A exp(C(log n)r) for some constants A, C and r. (If r = 1 then
A exp(C(log n)r) = AnC and f is bounded above by a polynomial.)
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would be extremely unlikely to be true “just by chance”, and you
then discover that B is true. This will greatly increase your confi-
dence in A. Pólya presents this pattern as follows.

A implies B
B very improbable in itself

B true
A very much more credible

Pólya does not set out explicitly why A becomes very much
more credible (though he provides persuasive examples), but it
can be explained quite naturally in a pseudo-Bayesian way as fol-
lows. There are two possible explanations for the truth of B. One is
that A is true, which happens with probability P[A]. The other is
that A is false and that B just happens to be true, which occurs with
probability P[¬A]P[B|¬A] (the second term stands for the condi-
tional probability that B is true given that A is false), which is small.
Putting this slightly more formally, Bayes’s formula tells us that

P[A|B] = P[A∧B]
P[B]

=
P[B|A]P[A]

P[B]
=

P[B|A]P[A]

P[B|A]P[A]+P[B|¬A]P[¬A]

=
P[A]

P[A]+P[B|¬A]P[¬A]
,

where the first three equalities constitute a proof of Bayes’s formula
and the last equality follows from the fact that B is a consequence
of A, which implies that P[B|A] = 1. Because P[B|¬A] is small
and P[A] is not particularly small, the bottom of the last fraction is
only slightly bigger than the top, which means that the probability
P[A|B], that is, the probability we should now assign to A given
the evidence B, is close to 1.

I have still not made any attempt to make sense of the notion
of the probability that a mathematical statement is true (or of the
related idea that B might “just happen to be true”), but let us post-
pone thinking about this problem for themoment, and instead look
back at some of the arguments in the previous section and try to
understand them from a pseudo-Bayesian point of view.

Goldbach’s conjecture provides a very good illustration of more
than one of Pólya’s patterns of plausible inference. A second prin-
ciple, which is closely related to the first, he presents as follows.
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A implies B
B quite probable in itself

B true
A just a little more credible

It too can be justified using Bayes’s formula. Again we have that

P[A|B] = P[A]

P[A] + P[B|¬A]P[¬A]
,

but this time P[B|¬A], rather than being small, is fairly close to 1,
which means that the bottom of the fraction on the right is only
a little smaller than P[A] + P[¬A] = 1, and therefore the entire
fraction is only a little larger than P[A].

Now let A be Goldbach’s conjecture and let B be a statement such
as that 10,000,000 can be written as the sum of two primes. We cer-
tainly know that A implies B, but in order to apply one of Pólya’s
patterns of reasoning we need to decide how probable we think that
B is “in itself”. That is, how likelywould it be that 10,000,000 could be
written as a sum of two primes if Goldbach’s conjecture is not true?

The answer to this question seems to depend quite a lot on how
hard one thinks about it. Somebody with no mathematical experi-
ence at all might think “It could go either way” or even “It’s quite
hard to find primes, so it’s unlikely that there will be two of them
that add up to a large number like 10,000,000 just by chance.” Such
a person might well have their confidence in Goldbach’s conjecture
significantly increased by the information that it is true for the num-
ber 10,000,000.

But somebody with more mathematical background will realize
that the second piece of reasoning above is quite wrong: it may
be hard to find large prime numbers, but that does not mean that
they do not exist, and in fact the prime number theorem implies
that they exist in some abundance. Therefore, for any given large
even number it is highly probable that there will be two primes that
add up to it “just by chance”, and therefore knowing that it is true
for just one such number has almost no effect on our confidence in
Goldbach’s conjecture.

However, in a sense that is true only because our confidence in
Goldbach’s conjecture has been greatly increased in another way.
Let R be the (not completely precise) statement that the primes are
distributed in a random-like way. If R is true, then given our knowl-
edge that there are many primes less than n, the probability that
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any given large even number can be written as a sum of two odd
primes is extremely close to 1. One can even quantify this probabil-
ity (assuming a suitable random model) and reach the conclusion
that the sum over all large m of the probability that 2m is not a sum
of two primes is very small, and since Goldbach’s conjecture has
been checked for small m, this means that Goldbach’s conjecture is
very likely to be true.

What has happened here? We have established that if the
random-distribution principle R is true, then almost certainly
Goldbach’s conjecture is true. But why should that increase our
confidence in Goldbach’s conjecture itself? On the face of it, since R
more or less implies Goldbach’s conjecture, it cannot be more likely
to hold thanGoldbach’s conjecture itself, so should not increase our
confidence in Goldbach’s conjecture.

However, this objection fails: the point is the very simple one that
if we observe that a statement A follows from a statement B that is
very likely to be true, then it follows that A is very likely to be true,
so our confidence in A may well become significantly higher than
it was before we made the observation. An extreme example of
this is if B is the final observation that completes a proof of A, but
even if we do not know for sure that B is true, it may well be that
for pseudo-Bayesian reasons we are more confident in B than we
previously were in A.

In the case of R, one reason we can be more confident in it than
we might have been in Goldbach’s conjecture in isolation is that it
makes stronger predictions: it implies for instance that there will be
manyways of writing 10,000,000 as a sum of two primes and not just
at least one. Those predictions are less likely to be true just by chance,
so our confidence in R is increased by correspondingly more.

As I mentioned earlier, this is even more clear when we use R
to make predictions about approximately how many ways there
should be of writing 10,000,000 as a sum of two primes. Predictions
of this kind turn out to be remarkably accurate, a fact that would
be hard to explain without R, so this is another example of the first
of Pólya’s patterns mentioned above.

As I also mentioned, the extra generality of R allows one to per-
form a much wider diversity of tests. For example, one can use
it to guess roughly how many primes p less than n there should
be such that p + 2 is also a prime. Such pairs (p, p + 2) are called
twin primes, and the famous twin prime conjecture states that there
are infinitely many of them. Although the twin-prime conjecture is
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still open, the number of twin primes up to n closely matches what
R suggests it ought to be, at least for the range of n we have man-
aged to test experimentally. This provides what one might think of
as an independent test of R, since instead of counting solutions to
equations of the form p + q = 2m (where p and q are required to
be prime) we are counting solutions to the equation p + 2 = q in
the range q ⩽ n for varying n. There are many such tests, and R
seems to pass all of them (with one or two subtle exceptions that
are well enough understood that they do not shake our confidence
in a suitably adjusted principle).

This is an important observation. As we shall see, for several
of the examples considered earlier, our confidence in a statement
increases if that statement is shown to follow from a more general
statement that we have been unable to disprove. Since there are
many more potential ways of disproving a more general statement,
we are more confident in the general statement than we were in its
consequence when the consequence was considered in isolation.

Here is a list of general statements, not all of them precise, that
played this kind of role in the discussions of specific problems earlier.

1. The normality of π follows from amore general principle that
biases in decimal expansions do not occur without a reason,
and that the reason is usually fairly simple. This more general
principle is confirmed by many other examples: for instance,
there is no discernible pattern to the decimal expansions of√

2, e, π2, and so on.

2. The statement that R(k, k)1/k converges to a limit follows from
a general principle that the behaviour of large graphs is not
very sensitive to the number of vertices. So if, for instance,
R(100, 100) is close to 2100 and R(150, 150) is close to 2150,
then we would expect R(200, 200) to be close to 2200. Again,
there are many examples, and in some contexts even theoreti-
cal arguments, that support this general principle.

3. The statement that the average end-to-end distance of an n-
step self-avoiding walk is roughly n3/4 follows from the more
general principle that the heuristic arguments of physicists are
a good guide to the truth, even if they are not rigorous proofs.
Once again, this general principle is confirmed by many other
examples (though there have been occasional cases where
pure mathematicians have disproved statements that physi-
cists had confidently asserted).
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4. Like Goldbach’s conjecture, the Riemann hypothesis can be
justified by the more general principle that the primes behave
as a natural random model would predict. (Recall Bombieri’s
statement that the failure of the Riemann hypothesis would
create havoc in the distribution of prime numbers.) It also
follows from the generalized Riemann hypothesis, which is a
precise mathematical statement. It also follows from the even
more general, but less precise, statement that there is a large
family of zeta functions that all satisfy appropriate versions of
the Riemann hypothesis. (The lack of precision is that, as far
as I know, there is not a clear conjecture about what the family
is, though there aremany important zeta functions that would
belong to it.)

A second reason for increased confidence in a conjecture is if it
can be shown to have an “otherwise unlikely” consequence that we
can prove, or at least confirm experimentally. Often the reason the
consequence is unlikely is simply that it is very precise. (Of course,
we see this in science too, such as Eddington’s famous measure-
ment of the gravitational deflection of starlight, which provided
a dramatic confirmation of Einstein’s theory of general relativity.)
Some examples of this related to the problems that we saw earlier
are the following.

1. The general principle that the primes are distributed as if they
are random makes precise predictions about the approximate
number of ways of writing a large even number as the sum of
two primes.

2. The arguments of statistical physicists concerning self-avoiding
walks predict not just the average end-to-end distance but also
a great deal more detailed information about what a typical
self-avoiding walk looks like, all of which is confirmed by
experiment.

3. A consequence of P not equalling NP is that even though it is
easy to find an efficient algorithm that solves 7/8 of the clauses
in an instance of 3-SAT, there is no such algorithm that will
solve a very slightly larger fraction of the clauses. And indeed,
no such algorithm has been found, and there is no serious
hope that one will be found.

4. It is conjectured that the zeros of the Riemann zeta function
do not just all have real part equal to 1/2 but that they are
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distributed in a way that closely resembles the distribution of
eigenvalues of random Hermitian matrices (chosen in a natu-
ral way). This basic idea has led to many remarkably precise
conjectures about the behaviour of the zeros that agree impres-
sively with experimental evidence.

It is also worth reflecting on reasons that our confidence may be
decreased. One examplewe have seenwasOdlyzko’s point that the
Riemann zeta function “reaches its asymptotic behaviour slowly”.
Although this does not alter the fact that the experimental evidence
concerning the zeros agrees extremely well with precise theoreti-
cal predictions, it raises the possibility that there might be some
phenomenon that shows up only for zeros with very large imagi-
nary parts, which would make that phenomenon difficult to detect
experimentally.

Another example was the probable difficulty of integer factor-
ization, where there were two main reasons that mathematicians
are inclined to be a little cautious in their assessment. One was that
there are known algorithms that perform related tasks efficiently in
very unexpected ways, so the mere fact that there is no obviousway
of factorizing efficiently is not completely compelling evidence: it is
at least conceivable that there is a non-obvious way of doing it. The
other was that factorization is a central example of a problem that
is in NP but that is not believed to be NP-complete, and another
prominent example of such a problem was recently shown to be
soluble in quasi-polynomial time.

The second of these reasons is an example of a further general
principle that mathematicians use whenmaking probabilistic judg-
ments about unproved statements, which is that similar statements
may well behave similarly. We often make guesses about problems
that are based on experience with similar problems, though obvi-
ously there is work to do in deciding what “similar” means here,
as some similarities will be more relevant than others. The inte-
ger factorization problem and the graph isomorphism problem are
superficially quite different: the relevant similarity is that they both
belong to NP and to co-NP, which is a rather deep phenomenon.

Once again, Pólya has identified this pattern of reasoning. He
presents it as follows.

A analogous to B
B true

A more credible
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He tentatively justifies it by saying that because the statements are
analogous, one can imagine that they are both consequences of
some more general statement H, and, as we have seen, generaliz-
ing a statement often makes it more plausible. Of course, if a third
statement C analogous to A and B turns out to be false, this will
reduce our confidence again, unless on closer inspection we find
that C has some property that might lead us to expect it to behave
differently, in which case we have the option of replacing the gen-
eralization H by a more specific generalization H′ that includes A
and B and rules out C.

§ 4. — What do probabilistic judgments about
mathematical statements even mean?

The pseudo-Bayesian account cannot fully answer the ques-
tion of why mathematicians have differing levels of confidence in
different unproved statements, because Bayes’s formula contains
probabilities on both sides of the equals sign. Sowhile it may give a
good account of howweupdate our beliefs given our priors and our
assessments of certain conditional probabilities, it does not explain
howwe arrive at the priors and conditional probabilities in the first
place (except when they themselves are updated beliefs, but that
just pushes the problem further back). At some point we need to
grapple with the question of what is going on when we use proba-
bilistic language in this very deterministic-seeming context.

At first glance it seems to make no sense at all to say of a spe-
cific (decidable)mathematical statement S that S is “probably true”
since it is either definitely true or definitely false. It is not as though
we repeatedly try to prove it, usually succeeding but occasionally
finding a counterexample.

However, this objection is not very strong, as easy examples from
outside mathematics show. If you toss a coin and keep it covered
with your hand, then it is either definitely heads or definitely tails,
but it still makes perfect sense for me to say that the probability
that it is heads is 1/2. Indeed, that makes sense even if you have
surreptitiously looked at the coin to see how it landed.

The judgment in the case of the coin can be justified with a very
basic frequentist interpretation of probability: all one has to note is
that the event is one that could in principle be repeatedmany times,
and one would expect the coin to come up heads half the time and
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tails half the time. So even though the coin has now been tossed,
before it was tossed it was reasonable to assign a probability of 1/2
to its coming up heads, and since I do not yet know the result it is
still reasonable.

If we try to use reasoning of this kind for our judgment about S,
we run into a problem,which is that S is not obviously an instance of
a repeated event that has varying outcomes: it is just a fixed mathe-
matical statement. However, one should not give up too quickly,
as there are certainly some probabilistic judgments about mathe-
matical statements that are similar to our judgment about the coin
toss. For instance, suppose I choose a random integer n between
1,000,000 and 1,100,000. The prime number theorem tells me that
about 7% of the numbers in that interval are prime, so I have no
difficulty in saying that the probability that n is prime is about 7%.

This might be regarded as a cheat, however, since I chose n ran-
domly, and if I put randomness in, then it is no surprise if I can
get randomness out. So let us instead make it deterministic. I shall
define a number n as follows. The number 21200 has around 400
digits. Take the sequence of five consecutive digits of 21200 that start
at the 201st digit, add the corresponding five-digit number (which
might start with some zeros) to 1,000,000, and let n be the result
of this calculation. I would like to argue that it is reasonable to say
that the probability that n is prime is about 7% — until, that is, I go
ahead and check, which I shall now do. The sequence of five digits
starting at the 201st is 06441 (if I didn’t miscount), so n =1,006,441,
which turns out to be prime, which is quite surprising given that it
there was only a 7% chance of this happening.

But what does it mean to say that n had only a 7% chance of
being prime? It is definitely prime, so does that not mean that it
had a 100% chance of being prime? In this case, the answer seems
to be something like the following. Although n is a single fixed
number, the way it was chosen was rather arbitrary. In fact, what I
did was to devise a simple pseudorandom generator — that is, a pro-
cedure that was likely to produce for me a sequence of five digits
with no discernible pattern. I could just as easily have started the
sequence at the 130th digit, or taken the digits in places 100, 200,
300, 400, 500 from the decimal expansion of

√
2, or used any num-

ber of other deterministic sequences defined in ways that would
lead me to expect that they will not have any properties that would
affect the propensity of n to be prime. (I could also have defined
it in ways that would have had such an effect: for example, had I
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taken the last five digits of 21200 then n would have been guaranteed
to be even, or if I had taken five consecutive digits from the deci-
mal expansion of 1/7, then there are only six numbers I could have
obtained, none of which, it turns out, yield a prime when added
to 1,000,000.)

Thus, my judgment that n had a 7% chance of being prime is
based on regarding the deterministic choice of n as just one example
of a whole class of choices — roughly speaking, numbers obtained
from five-digit sequences that experience suggests will be typical.
And the role of the calculation I did (with the help of Wolfram
Alpha(8)) was very similar to the role you play when you lift your
hand and showme the coin. It may be that the fact that n is compos-
ite follows from axioms and rules of deduction that I fully accept,
but that does not imply that I know that n is composite: to gain
such knowledge I need to do the calculation, which takes effort.
Moreover, this last point can bemade quite formal using the theory
of computational complexity, which actually studies the amount
of effort needed to determine whether certain mathematical state-
ments are true.

The basic idea here is that a mathematical statement such as
“This n is prime” can often be seen as a representative of a much
wider class of mathematical statements, and once one has a big
class of statements it makes perfect sense to ask what percentage of
them are true. But while that kind of analysis shows that the notion
of probability can sometimes make good sense, can we apply it to
statements such as Goldbach’s conjecture, the Riemann hypothesis,
or the normality of π?

I believe that it is indeed possible, and that some of our reasons
for judging these statements to be likely or unlikely suggest that we
do indeed regard them as representative of larger classes of state-
ments.

This is quite easy to see in the case of the normality of π. Let us
think about how a typical mathematician’s understanding of this
problem might develop. As a child, one learns about decimals,
and after a while one learns to calculate the decimal expansions
of fractions such as 1/2, 1/5 and 1/10, followed by more interesting
examples such as 1/3, 1/9 and 1/6, followed by more interesting
examples still such as 1/7. In all these cases the decimal expansion
either terminates or eventually recurs, so one might come to the

(8)Wolfram Alpha is a website that computes answers to questions from several
different domains, including mathematics.

https://www.wolframalpha.com/
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view that non-whole numbers typically have terminating or recur-
ring decimal expansions, which would lead one to expect, wrongly
as it turns out, that π has such an expansion and is therefore very
far from being normal. Note that π is being seen here not just as
an individual number but as an example taken from the set of all
numbers. One might realize on reflection that it is certainly not
true that all numbers have recurring expansions, since one can just
write down an infinite decimal expansion and make sure it doesn’t
recur. But one could still take the attitude that such numbers were
artificial, whereas π arises naturally and is therefore likely to have
a more regular decimal expansion.

A little later one’s perspective shifts completely: one observes
that numbers that arise naturally tend to have very irregulardecimal
expansions unless they are rational numbers. That is, terminating
or recurring decimal expansions are verymuch the exception rather
than the rule.(9) At that point, why is it natural to expect that π is
a normal number? An obvious answer that our budding mathe-
matician might give is, “We know the decimal expansion of π to
many millions of decimal places: if there were some kind of bias,
one would expect it to have shown up by now.” This can be seen
as appealing to the following general principle: if the decimal expan-
sion of an irrational number that arises naturally or is built in a simple
way out of numbers that arise naturally does not show any sign of bias in
the first million digits, then probably it will never show any sign of bias.
This principle allows for the possibility that there may be excep-
tions, but there are many numbers to choose from, so π probably
isn’t an exception.

Suppose we pursue the question a little further, raising the pos-
sibility that since π is a very special number, it might conceivably
have a property that leads to an unexpected but very small bias in
its decimal expansion. Why does this seem so unlikely? Again it
is natural to appeal to more general principles: it is hard to imag-
ine what a proof could possibly look like — for one thing, decimal
expansions are closely tied to the number 10, which seems to have
nothing to do with π — and we know of no such argument for any
irrational number built in a simple way out of naturally occurring
irrational numbers.

The absence of the merest hint of a technique that might be use-
ful for showing that π is not normal is not in itself evidence that π is

(9)Of course, for this to happen one must first become familiar with facts such
as that π is irrational and that there are a lot of irrational numbers.
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normal, but it becomes convincing thanks to an even more general
principle that is confirmed by a great deal of mathematical expe-
rience.

No-coincidence principle. If an apparently outrageous coincidence
happens in mathematics, then there is a reason for it.

We have arrived at a possible interpretation of the statement “π
is almost certainly normal”. Suppose we accept the no-coincidence
principle on the grounds that it is amply backed up empirically.
From it we can deduce that if there is no good reason for π not to be
normal, then π is normal. So now our attention turns to the proba-
bility that there is a good reason for π not to be normal. Experience
with good reasons suggests that they usually, though not always,
kick in reasonably soon, so given that there is no discernible pattern
in the digits of π that have so far been calculated, of which there are
a huge number, any reason for the non-normality of π would have
to be very strange and unusual. So now we wish to assess the prob-
ability that there is a good, but strange and unusual, reason for π
not being normal. At this point we can perhaps appeal to a more
precise variant of no-coincidence principle, namely that, on average
at least, the greater the coincidence, the easier it is to find an expla-
nation for it.(10) If, for example, there were only finitely many 7s in
the decimal expansion of π, that would a priori be such an extraordi-
narily improbable event that we would expect to be able to uncover
the reason for it. The fact that we have not been able to find any
such argument, for π or for any other number, is therefore quite
strong evidence that no such argument exists. Thus, the interpre-
tation of what it means to say that π is almost certainly normal is
thatwhile unexpected reasons do exist and therefore strange things
do happen, the chances that any such reason applies to any given
statement (of a kind that asserts that there is no departure from ran-
domness, and where this is backed up by experimental evidence
and a complete failure to find anything resembling a plausible rea-
son that there would be such a departure) are small.

(10)I first heard something like this principle from Don Zagier, who argued that
many problems in number theory are hard precisely because they are asking you
to prove that something happens that is exactly what you would expect. If a phe-
nomenon comes into this category, it is not clear that it demands an explanation,
which raises the likelihood that there is no easy proof of it. Goldbach’s conjecture
is a case in point — as already discussed, it would be a big surprise if some large
even integer were not a sum of two primes.
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The example of eπ
√

163 discussed earlier can also be analysed in
this way. To somebody who does not know the relevant number
theory and has not heard that eπ

√
163 is extremely close to an integer,

it is just a fairly arbitrary number one can build, not interestingly dif-
ferent from π

√
2 or eπ2 or eπ+

√
163. And if you build numbers that

are not obviously rational out of numbers like π, e and square roots
of positive integers, then they will tend to have fractional parts that
are pretty uniformly distributed in the interval [0, 1), so although
some of themwill be fairly close to integers just by chance, the prob-
ability of stumbling on one that just happens to be within a million
millionth of an integer will be astronomically small.

One is therefore justified in being very surprised that eπ
√

163 is
indeed within a million millionth of an integer: again the point is
that we are seeing eπ

√
163 as a member of a more general class. Of

course, that does not mean that an event with a probability of order
of magnitude 10−12 has just occurred, because we should at least
entertain the possibility that some of the numbers in the class are
close to integers for special reasons. For example, this is true of
the number ϕ100/

√
5, where ϕ is the golden ratio

√
5+1
2 . The 100th

Fibonacci number is given by the formula ϕ100−(−ϕ)−100
√

5
. Since ϕ > 1,

ϕ−100 is tiny, so ϕ100/
√

5 is extremely close to the 100th Fibonacci
number, which is an integer. Thus, some simple expressions do
turn out, for good reasons, to define irrational numbers that are
very close to integers, and this affects one’s judgment of the proba-
bility that it will happen in any particular case. That contrasts with
the case of the normality of π, wherewe completely lack arguments
that might be used to prove non-normality, and therefore feel very
confident that π is normal. Note also that additional mathematical
knowledge can affect one’s judgment of the likelihood of an argu-
ment of a certain kind existing. If, for instance, one is told that 163
is the largest positive integer k such that the field Q(

√
−k) has class

number 1, then one has the information that the number 163 has a
very special number-theoretic property. This could be completely
irrelevant, but it at least increases the probability that an argument
exists that would show that eπ

√
163 is very close to an integer. And

as it happens, it turns out to be highly relevant.
We can interpret the assertion that Goldbach’s conjecture is

almost certainly true in a similar way, but only after a certain
amount ofmathematical thought, becausewhile the failure of some
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very large even integer n to be the sum of two primes would be
a remarkably improbable event if we assume that the primes are
“distributed randomly”, the primes are in fact created in a rather
systematic way — they are what is left over when we remove from
the positive integers the number 1, then all multiples of 2 (not
including 2 itself), then all multiples of 3, then all multiples of 4
(though they have already been removed), and so on. The sets we
are removing have a lot of structure — they are arithmetic progres-
sions — and it is not obvious that we can’t exploit that structure to
show that the set that is left over has interesting structure as well,
over and above simple facts such as that only one prime is even.
However, we now have a great deal of experimental evidence that
the primes are indeed about as random as they can be, and we also
have enough theoretical understanding of this quasirandomness to
have been able to prove that every odd integer from 9 onwards is a
sum of three odd primes, as well as several other results in a similar
vein. This provides strong evidence that there is unlikely to exist a
surprising reason for some large even integer not to be a sum of two
primes, evidence that is all the more compelling given the tables
that show a very close agreement between how many ways there
are of writing large even numbers as a sum of two primes, and how
many ways we would expect there to be.

Again, thanks to the no-coincidence principle, the focus has
shifted from the probability that Goldbach’s conjecture is true to
the probability of the existence of a certain kind of argument. That
we judge to be unlikely for various reasons: not only have we failed,
after centuries of thinking about the primes, to find any arguments
that would lead us to expect departure from randomness (if “ran-
domness” is suitably interpreted), but the fact that we have also not
observed any such departure empirically, either with Goldbach’s
conjecture or with a large number of other conjectures that assert
that the primes behave roughly as onewould expect them to, makes
it unlikely that any such arguments exist, since if they did exist then
we would probably have observed their consequences.

This kind of analysis can be used to understand both our con-
fidence in the Riemann hypothesis, such as it is, and the fact that
that confidence is not total. For there to be a counterexample to the
Riemann hypothesis, there would have to be a very unexpected bias
in the distribution of the prime numbers, so there would need to
be a reason, and that reason would have to be somewhat strange,
since the bias has not shownupdespite a great deal of computational
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evidence being collected. However, as one of the main collectors of
that computational evidence has pointed out, while it is difficult to
imagine an explanation for the existence of a counterexample with
what would have to be a very large imaginary part, it is not impos-
sible, since there are reasons to believe that the typical behaviour
of the Riemann zeta function manifests itself extremely slowly. That
reduces our confidence that no argument of the required kind exists.

When it comes to the problem of whether P=NP, the no-
coincidence principle does not at first seem to help in quite the
same way. What might a reason for P not equalling NP be like? An
obvious answer is that it might be an efficient algorithm for solving
an NP-complete problem. But such an algorithm does not seem as
though it would be an explanation for an outrageous coincidence:
it would just be a straightforward counterexample to the assertion
that no such algorithm exists.

Nevertheless, a slight modification of the no-coincidence prin-
ciple does apply here reasonably well. Consider again the NP
problem where one is presented with a number n (which one
should think of as having a large number of digits), told that it is
the product of two primes, and asked to work out what those two
primes are. As mentioned before, it is relatively easy to program a
computer to check whether a proposed answer is correct: if some-
body suggests the two numbers p and q, then all one has to do is
multiply p and q together using a standard procedure such as long
multiplication. If P=NP, then this fact is enough to guarantee that
one can actually find p and q, which on the face of it seems unlikely.
(If you think it is not unlikely, see if you can find the two prime fac-
tors of 35873023. In case it helps, I obtained the numbers in question
from a Wikipedia page entitled “List of prime numbers”.)

But why should ease of checking have anything to do with ease
of finding? If I’m looking for my telephone, I’ll recognise it very
easilywhen I see it, but that doesn’tmean it is easy to find. Similarly,
my ability to do long multiplication seems to have almost nothing
to do with factorizing.(11) So although the statement that P=NP
is not obviously a claim that an outrageous coincidence occurs, it
is still claiming something pretty outrageous that would demand
an explanation. Therefore, we can maintain the spirit of the no-
coincidence principle by generalizing it slightly as follows.

(11)As I mentioned earlier, it is not impossible that there is some extremely clever
method of factorizing efficiently. But if P=NP it would be possible to factorize efficiently
by virtue of the fact that we can multiply efficiently — that is what seems unlikely.
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No-miracle principle. If an apparent miracle happens in mathematics,
then there is a reason for it.

The difference between this and the no-coincidence principle
is that we allow miracles that do not have natural probabilistic
descriptions: it would be miraculous if the ability to carry out long
multiplication guaranteed the ability to factorize efficiently, but the
word “coincidence” does not seem appropriate for that particular
miracle.

That said, with a little more effort it is possible to use the no-
coincidence principle for the P versus NP problem as well. Indeed,
one of Scott Aaronson’s arguments has that flavour: if P did equal
NP then it would be quite a coincidence that we find it easy to sat-
isfy 87.5% of the clauses in a 3-SAT instance but extremely hard to
satisfy 87.6% of them. There is also a concept of pseudorandom gener-
ators, which are deterministicmethods of generating sequences that
appear to all intents and purposes to be random. (Earlier in this
article I defined a baby pseudorandom generator when I wanted
to create a random-looking five-digit sequence and took a string of
digits from the middle of the decimal expansion of 2100.) There are
several such methods, and the evidence is that they work, in the
sense that they have no features that would allow one to detect effi-
ciently how they were created or make any guesses about how they
will continue. However, if somebody explains how they generated
a pseudorandom sequence, it is easy to check that their method
does indeed generate the given sequence, so if P=NP then there is
some outrageous coincidence hidden in the behaviour of all these
apparently random sequences that allows one to efficiently work
out how they were generated (or at least how each one could have
been generated).

Whichever version of the principle we decide to use, the conclu-
sion is the same: for P to equal NP something outrageous would
have to happen; that would demand an explanation; and the evi-
dence leads us to believe with very high confidence that no such
explanation exists. (Our confidence is perhaps not total, because
over the years some very surprising efficient algorithms have been
discovered, but there are additional reasons to believe that an algo-
rithm for efficiently solving an NP-complete problem would be a
step too far. That said, the existence of surprising algorithms is
commonly taken as a reason to expect it to be very hard to prove
that P does not equal NP.) So once again the focus shifts from the
statement itself to the existence of a proof of a certain kind.
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Let me try to summarize the proposal I am making for how to
interpret probabilistic judgments concerning mathematical state-
ments. Perhaps themost important point is the suggestion that they
are not really probabilistic judgments concerning the truth values
of statements, but about the existence of arguments (not necessarily
rigorous) in support either of those statements or of their negations.
In particular, many probabilistic judgments appear to have justifi-
cations of the following general kind.

1. If statement S were false, a miracle would have to occur, and
there would have to be an explanation for why it occurs.

2. There is probably no explanation of the kind that would be
needed to explain such a miracle.

However, so far this replaces one probabilistic judgment of a determin-
istic event by another. What does it mean to say that there is probably
no explanation of a certain kind, when either there is one or there isn’t?

Here the proposal would be to interpret the probabilistic judg-
ment as standing for a statement of the form that statements of a
certain kind tend not to be backed up by arguments. That is, we
look at the miracle not in isolation but as representative of a certain
class ofmiracles. Our judgment is then a genuine probabilistic state-
ment: that a randommiracle chosen from that class has only a small
chance of being explainable (and therefore only a small chance of
actually occurring).

We have seen an example of this: somebody who did not know
about eπ

√
163 would argue that it would take a miracle for such a

number to be within 10−12 of an integer, and therefore that it could
not be so close to an integer without some very good reason, and
that such reasons, though they do exist, are few and far between.
Therefore, eπ

√
163 is very unlikely to be within 10−12 of an integer.

That would be a perfectly reasonable judgment, even though it hap-
pens to be mistaken.

Note that the more one knows about a problem, the more fea-
tures of any given miracle one will be aware of, which affects what
class of miracles one regards the particular miracle as belonging
to. For instance, if you are asked whether (

√
2 + 1)30 is likely to be

very close to an integer after reading what I wrote earlier about the
golden ratio, you will probably regard (

√
2 + 1)30 not just as some

random strange number that can be built out of well known irra-
tional numbers, but as a power of a root of a fairly simple quadratic
equation, which might well have a reason to be close to an integer
— as indeed it turns out to be.
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§ 5. — Goodman-type paradoxes.

Our discussion has taken us quite a long way from experimen-
tal evidence, so let us briefly consider what part it has to play in
the above account. I have suggested that what is meant by the
judgment that S is probably true is that the miracle that would be
required for S to be false belongs to a class ofmiracles of which only
very few actually occur, and that is because miracles do not occur
without explanations, and explanations of the kind that would be
needed to explain miracles in the given class are very rare.

If that is a correct interpretation, what is the role of experiment in
increasing our confidence in a mathematical statement? More gen-
erally, how does that interpretation fit with the pseudo-Bayesian
account of how we update our perceptions of probability in the
light of new evidence?

The answer to the second question is quite easy to give in connec-
tion with specific examples. For instance, let us consider again the
fact that our confidence in Goldbach’s conjecture increases some-
what when we find that it holds for all even integers up to 1010

(say), quite a lot more when we find that the number of ways of
writing an even integer n up to 1010 as a sum of two primes is not
just non-zero but large whenever n is large, and even more when
we find that the number of ways of doing it is not just large but a
good approximation towhat a natural randommodel of the primes
would predict.

The fact that Goldbach’s conjecture is true up to 1010 means that
if it is false, then it has to be true up to some large integer and then
false. That would be quite strange, so it counts as a miracle that
would need an explanation. However, there are quite a lot of expla-
nations around that have the right form: that is, they explain why
some statement of the form ∀n P(n) is false but also explainwhy the
smallest counterexample is very large. That is not to say that such
explanations are commonplace, but it says that in the absence of any
further considerations, themiraclewould not be all thatmiraculous,
so we do not want to assign too small a probability to Goldbach’s
conjecture being false.

If we now find that the large even integers we look at can all be
written in many ways as a sum of two primes, then we start to get
the impression that writing an even integer as a sum of two primes
tends to be not just possible but actually quite easy. It now becomes
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significantly harder to imagine what an explanation for the conjec-
ture being false could look like. There would presumably have to
be something special about some particular very large even inte-
ger n that caused a “conspiracy” between the primes — a deal that
each time p is prime, n − p will make sure it has a non-trivial factor.
There is no hint of any such conspiracy occurring, or even getting
close to occurring, for any of the even integers we have looked at
so far, and it is very difficult to think of a property of an extremely
large n that would not hold for any smaller n and would explain
why the primes suddenly aligned themselves for that n.

Finally, if we go on to observe that the number of ways of writ-
ing a large integer n as a sum of two primes is well predicted by
a random model, then what is demanded of a putative explana-
tion for the failure of Goldbach’s conjecture is even stronger: we
would need to know why the number of ways of doing it behaves
exactly as a random model would predict for all the even integers
we have looked at, but then for some very large even integer not
only fails to behave as predicted but fails in a very radical way.
Since the random model makes good predictions not just about
Goldbach’s conjecture but about many other statements to do with
the primes, the evidence strongly suggests that no such explana-
tions exist (since if they existed, we would expect to have observed
their consequences by now). This contrasts with the situation we
were in when all we knew was that Goldbach’s conjecture itself
was true up to 1010, when we were considering a different class of
explanations — broadly speaking, explanations of why some natu-
ral property is true for all positive integers up to some very large
n but not true for all positive integers — of which there are some
notable examples.

Let us now consider how a famous paradox of Goodman plays
out in the context of computational evidence for mathematical
statements. Goodman pointed out that the traditional problem of
induction — why should we believe that a certain statement will
continue to be true just because it has been observed to be true up
to now? — is not adequately formulated, because there are many
statements for which we do not have such a belief. To make his
point, he defined a predicate “grue”, which means “green up to
time t and blue thereafter”. If we set t to be the beginning of 2050,
say, then all experimental confirmation of the statement “all emer-
alds are green” also confirms the statement “all emeralds are grue”.
And yet we do not believe the latter statement — we believe that at
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the beginning of 2050, emeralds will remain green. It is clear that
the reason for this has something to do with the fact that “grue”
is a very unnatural predicate, but it is quite hard to specify which
predicates should count as natural.

Here is a statement that relates in a Goodman-like way to
Goldbach’s conjecture.

Conjecture. No power of 21,000,000,000 is a sum of two primes, but all
other even integers greater than 2 are sums of two primes.

All the computational evidence we have obtained is consistent
with this modified conjecture— indeed, the largest known prime is
far smaller than 21,000,000,000. So why do we not regard the evidence
as supporting the modified conjecture?

If one uses the framework suggested in the previous section,
then the answer is surprisingly easy: for the modified conjecture
to be false, a miracle would not have to occur. Indeed, all that
would be needed for the modified conjecture to be false is for the
primes to behave exactly as expected, since that would guarantee
that 21,000,000,000 could be written in many ways as the sum of two
primes. In the case of Goldbach’s conjecture itself, a miracle needs
to occur for it to be false, and the experimental evidence, which
has failed to find even a hint of such a miracle, strongly supports
the hypothesis that there is no reason for a miracle to occur, which
in turn (thanks to the no-miracle principle) strongly supports the
hypothesis that no miracle in fact occurs. For the modified conjec-
ture, a miracle doesn’t need to occur, so the experimental evidence
no longer plays this role.

A very interesting contribution to the large literature about
Goodman’s paradox was made by Rosemarie Rheinwald in 1993.
She points out that one’s starting beliefs, or what she calls our epis-
temic situation, have a critical effect on whether a predicate seems
natural or not. She illustrates this with the following beautiful
example. Apparently, there are two kinds of hares, field hares and
Alpine hares. Field hares are always brown. As for Alpine hares,
they themselves come in two kinds: one kind is alwayswhite, while
the other kind is brown in the summer and white in the winter.
She invents a Goodman-like predicate “su-wi-brote” that allows
one to express this situation by saying, “All hares are su-wi-brote”.
She then argues that “su-wi-brote” is a projectible predicate — this
means that it is suitable for the purposes of inductive inference —
but only to somebody with the right set of background beliefs. To
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someone likeme before I read her article, the fact that all hares I had
observed up to now (not just in real life but in books, photographs,
etc.) were su-wi-brote would not count as evidence in favour of
the hypothesis that all hares are su-wi-brote, since they had also
been brown and I had not heard of Alpine hares. But if somebody
who had heard of Alpine hares and knew a bit about them were
to obtain appropriate confirming instances of the hypothesis “All
hares are su-wi-brote” — and for the confirmation to be appropri-
ate it would of course be necessary to look at field hares and Alpine
hares, and to look at the latter both in summer and winter — then
their confidence in the statement “All hares are su-wi-brote” would
be increased.

We have already seen examples of how background beliefs have
an important effect on one’s perception of how likely mathematical
statements are to be true. They can also have an effect on which
predicates are projectible, as the following example, which is well
known to mathematicians, illustrates nicely.

The example concerns the following question. Suppose you
draw n points round the circumference of a circle, and you join
each pair of points with a line segment. Assuming that the points
are in general position (in particular, no three of the lines meet at a
point that isn’t one of the points on the circumference), how many
regions is the circle divided into by the lines?

If one draws one point, then there are no lines and the circle is
“divided” into one region. If one draws twopoints, then there is one
line, which divides the circle into two regions. With three points,
the lines form a triangle, and there are therefore four regions —
three outside the triangle and one inside. With four points, the lines
form a quadrilateral with its two diagonals, making eight regions
— four outside the quadrilateral and four inside. With five points
there are sixteen regions, as you will readily see if you draw a
picture. (There is a pentagon with five regions outside it and a
five-pointed star inside. Inside the pentagon but outside the star
there are five triangular regions. The star itself consists of an inner
pentagonal region and five triangles attached to it. This makes
5+5+5+1=16 regions.)

Writing down the numbers we have obtained so far, we obtain
the sequence 1, 2, 4, 8, 16. It would seem that the only natural
hypothesis we can form is that the number of regions doubles each
time one adds a point, so that with n points there are 2n−1 regions.
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However, as is often pointed out, any continuation of any short
sequence can be justified with the help of the fact that if d terms
a1, . . . , ad of a sequence are given, then there is a polynomial P of
degree at most d − 1 that P(1) = a1, P(2) = a2, . . . , P(d) = ad. For
example, suppose I wish to create a cubic polynomial P such that
P(1) = 1, P(2) = 1, P(3) = 2 and P(4) = 3. I first note that the
polynomial (x − 2)(x − 3)(x − 4) is a cubic polynomial that takes
the value −6 at 1 and 0 at 2, 3 and 4, and in a similar way I can
create cubic polynomials that vanish at any three of the numbers
1, 2, 3, 4 and not the fourth. Then a suitable combination of these
cubic polynomials can be used to give me one that takes the values
I wish. In this case, we will end up with the polynomial

P(x) = − (x − 2)(x − 3)(x − 4)
6

+
(x − 1)(x − 3)(x − 4)

2

− (x − 1)(x − 2)(x − 4)
2

+
(x − 1)(x − 2)(x − 3)

6
,

the origin of which I could disguise if I simplified it bymultiplying
out all the brackets and collecting terms.

Returning to the sequence 1, 2, 4, 8, 16, we therefore see two
things: first, given any continuation of this sequence, there is a
polynomial of degree at most 5 that will give that continuation, and
secondly, there is a polynomial of degree at most 4 that agrees with
the sequence so far. In the light of that, should we revise our assess-
ment that 32 is the obvious continuation of the sequence?

If one is given the sequence 1, 2, 4, 8, 16 in isolation and asked to
continue it, then 32 is unquestionably the most natural answer: it is
unusual for each termof a sequence to be obtained from the previous
one by a process as simple as doubling, and this has now happened
four times. (I suppose Imust acknowledge that it is also the case that
we have troubled the previous number four times, where that means
doubling it if the number is at most 10 and trebling it if it is greater
than 10, but troubling is quite clearly a more complicated operation
to define than doubling.) By contrast, it is not at all unusual for a
sequence of five numbers to be given by the values of a quartic poly-
nomial, since that is true of all sequences of five numbers.

Interestingly, one can say the same if one has a little more infor-
mation about where the sequence comes from. Suppose one knows
that it comes from a parameter associated with a natural sequence
of combinatorial structures. Experience shows that something like
the following principle is quite reliable.



98 T. Gowers M×Φ vol. 1

Nice-formula principle. Given a sequence that arises naturally in
mathematics, either it is given by a nice formula, or there is no hope of
expressing it by any exact formula but it can at least be approximated by
a nice formula.(12)

I would not wish to claim that the above principle holds univer-
sally — indeed, I can think of examples of combinatorial problems
that give rise to bizarre formulae — but exceptions to it appear
to be quite rare. (Note that this probabilistic statement is quite
straightforward to interpret: it is simply saying that the propor-
tion of naturally occurring sequences that are exceptions to the rule
is small.) Nevertheless, if one knows that a sequence that begins
1,2,4,8,16 has arisen naturally in a mathematical context, there is a
very good chance that it is the sequence of powers of 2.(13)

Now let us change our mathematical epistemic situation by
reflecting a little more on how the number of regions the circle is
divided into behaves as the number of points increases. Each region
contains on its boundary either one of the n points on the circle or
a point where two of the connecting lines intersect. Each of the n
points on the circle belongs to n regions, and since each intersec-
tion of two of the lines can be specified by four of the points (the
end points of the two lines in question), the number of intersections
of two of the lines is at most (n

4). Moreover, each such intersection
belongs to four regions. Therefore, the number of regions is cer-
tainly less than n2 + 4(n

4), which is easily checked to be at most n4

for all positive integers n.
This shows that the formula 2n−1 cannot be correct — it grows

exponentially quickly, which, as any mathematician knows, is a far
quicker rate of growth than any polynomial, and in particular far
quicker than n4. Indeed, we can say more: if there is a polyno-
mial formula for the number of regions, then that polynomial will
have to be of degree 4 at most, since polynomials of higher degree
(12)An example of the second situation is the sequence of primes: there is no nice

formula for the nth prime, and almost certainly no sensible formula at all, but it
follows from the prime number theorem that the nth prime is approximately equal
to n log n. For the first situation, I am taking the word “formula” in a fairly broad
sense, and would include sequences given by simple recurrence relations or as the
coefficients of the power series of some nice function, for instance.
(13)I implicitly appealed to the nice-formula principle when discussing the

Riemann hypothesis earlier. If one forms the sequence of real parts of the zeros of
the zeta function, in increasing order of their imaginary parts, then it must equal
1/2 for all the many terms we know so far, and must equal 1/2 at least 40% of the
time. The nice-formula principle then tells us that it should be a constant sequence.
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grow faster than polynomials of lower degree and we know that
the growth rate is not faster than that of n4.(14)

With this new perspective, we find ourselves asking the follow-
ing question: what is the nicest formula that would yield the values
1,2,4,8,16 but grow at most as fast as a quartic polynomial? And
the answer is probably that one should actually take a polynomial.
There is only one that can work, and if it gives the correct formula,
then the number of regions we obtain with six points round the
circle should be 31. And that turns out to be the case.(15)

The main point I am making here is that the hypothesis that the
sequence 1,2,4,8,16 is given by the unique quartic polynomial that
takes those values is a bit like the hypothesis that all hares are su-
wi-brote: at first glance it seems very unnatural, but if one knows a
bit more, then that perception changes substantially.

This is also another nice example to test out the analysis of probabilis-
tic judgments. It now seems highly probable that the quartic polynomial
is indeed the correct formula for the number of regions, but why?

Before we did the experiment of drawing a sixth point and find-
ing that the number of regions was 31, our two likely hypotheses,
given the nice-formula principle, were these.

1. The number of regions is given by a nice formula.
2. The number of regions is not given by a nice formula but can

be approximated by a nice formula.

The fact that the obvious nice formula 2n−1 was doomed to fail
meant that the nicest formula by some way was given by the
one quartic polynomial that agrees with the sequence 1,2,4,8,16.
Therefore, if the first hypothesis is true, then probably the number
of regions is given by this formula. If the second hypothesis is true,
then there is some formula that will be a good approximation to
the number of regions when n is large, and may or may not be a
good approximation when n is small. With a bit of experience, we
might also judge that the chances of the number of regions having
a polynomial dependence on n are reasonably high — something
(14)A less conclusive but still quite convincing argument that 2n−1 is unlikely to be

the correct formula is that it fails when n = 0: if you draw no points, then the number
of regionswill be 1 andnot 1/2. This is less conclusive because sometimes zero behaves
differently from other numbers, but it is a disturbing observation nevertheless.
(15)The polynomial in question can bewritten as (n−1

0 )+(n−1
1 )+(n−1

2 )+(n−1
3 )+(n−1

4 ).
The advantage of writing it this way is that it makes it clear why it gives powers of
2 for small n and not for large n. Note also that if we substitute in n = 0 we obtain
the answer 1, so the troubling anomaly at zero is no longer present.
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like 75%. (This judgment is based on having seen a multitude of
problems, some of which lead to nice exact formulae and others of
which don’t, and feeling that this one could go either way but is
probably the right sort of problem for a polynomial dependence.)

If the first hypothesis is correct, then the next term of the
sequence will be 31. If it is incorrect, then the next term might be
31 just by chance, but that is fairly unlikely — there are probably
around half a dozen numbers it might be. If we take this proba-
bility to be 1/6, then Bayes’s formula tells us that the probability
that the first hypothesis is true given that the number of regions is
indeed 31 when there are six points is

3/4
3
4 +

1
6 ×

1
4
=

18
19

.

Of course, the above calculation depended very much on the prior:
if we had started out with a greater faith in the formula turning out
to be nice, then our confidence after the experiment would be that
much higher.

If we work out the next value of the polynomial, we find that it
is 57, and this agrees with the number of regions when there are
seven points round the circle. A Bayesian calculation similar to the
above, but with 1/6 replaced by a smaller fraction (because now
the range of plausible numbers if there is not an exact formula is
larger) increases the probability to one that is quite a bit closer to
1 — something like 199/200.

It is worth reiterating that this sort of reasoning is of more than
merely philosophical interest, and plays an extremely important role
in the choices mathematicians make when deciding what to think
about next when they are searching for proofs. This can be seen
very directly if one looks at a famous database of integer sequences
created by Neil Sloane. Sloane’s database is a huge collection of
beginnings of sequences obtained from all over mathematics, and
it has led to many discoveries in the following way. A mathemati-
cian thinks about a problem that leads naturally to the definition of
an integer sequence, calculates the first few terms of that sequence,
searches for a sequence in Sloane’s database that agrees with this
sequence as far as the calculations have been carried out, and then
guesses that the two sequences are equal. This often turns out to be
the case even if the sequences have been obtained in very different
ways. There follows the fascinating process of trying to explain why
the sequences are the same— the no-coincidence principle gives one
considerable confidence that such an explanation exists.
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The two conclusions we can draw about Goodman-like mathe-
matical statements after the discussion above are these.

1. Some such statements are not backed up by experimental evi-
dence because they do not require a miracle to be false, so the
analysis of why we judge some statements to be likely, and of
the role that experimental evidence can play in that judgment,
does not apply.

2. What looks like a natural hypothesis can change dramatically
when one knows more about a question.

This does not fully solve Goodman’s paradox in a mathematical
context, however. For instance, I have not given a Goodman-proof
account of what a “miracle” is or of what a “nice formula” is.

These two questions are closely related. For instance, we do not
say that it is amiracle that of all themillion possibilities that it could
be, the sequence of six consecutive digits of π that starts at the 20th
digit after the decimal point should turn out to be 626433, but had
it turned out to be 000000 thenwewould have been surprised. Had
it been 333333 or 123456wewould have still been surprised but per-
haps slightly less so, and if it had been 345678 or 246810 we would
have been slightly less surprised still. And the reason for that seems
to be tied to how easy it is to describe the sequences.(16) (17)

So a rough definition of “miracle” is something like this. Before
we do an experiment (which might take the form of a hand cal-
culation) we have a probability distribution in mind of what the
outcome is likely to be. If a certain property is, according to that
probability distribution, very unlikely to occur and also has a very
simple description, then that counts as a miracle. Of course, it is
only a miracle from our prior perspective: the no-miracle princi-
ple tells us that there is probably an explanation for what we have
just observed, and if we find one then we will no longer perceive
the observation as miraculous.

To give an example, if we found a very large even number that
could not be expressed as a sum of two primes, that would be an
(16)The reflex for many mathematicians would be to mention Kolmogorov com-

plexity at this point, but while in many situations it would be very surprising if a
random-looking sequence could in fact be generated by a short program, the mir-
acles that occur in normal mathematics tend to involve sequences with patterns
that are simpler than is guaranteed by their being the output of a short program.
(17)Only after writing this paragraph did I learn that starting at the 768th digit of

π there is a sequence of six consecutive 9s. This is genuinely surprising, but not
surprising enough to demand an explanation.
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extremely unlikely event according to a very natural randommodel
of the primes, and it is also an easy event to describe, so we would
count it as a miracle. The event “Can be written as a sum of two
primes in under half the number of ways one would expect” would
count as amiracle if it occurred—not quite as big amiracle, but still
(to an expert) utterly astonishing. But the event “Can be written in
r ways for some positive integer r that has four 5s among its last six
digits” would not be a miracle — there are just too many descrip-
tions of about that level of complexity, given the probability of the
event that we are witnessing.

Thus, it remains to discuss concepts such as “nice formula” or
“simple description” or “natural statement”.

§ 6. — Naturalness and levels of abstraction.

If I am using LaTeX to typeset a document and want to empha-
size a word, then I have two options. One is to enclose the word
in curly brackets and write \textit outside it. This has the effect
of putting the word into italics. The other is to use the command
\emph instead, which stands for “emphasize”. Here is a sample sen-
tence, typeset once using \textit and once using \emph.

1. We have also troubled the previous number four times.

2. We have also troubled the previous number four times.

Which command I chosemadenodifference to the output, but there
is nevertheless an important difference between the two commands,
and in many contexts it is considered better style to use \emph. To
see why, let us look at an example where the choice of command
does make a difference. Again, I shall use \textit first and then
\emph.

Definition. A positive integer n is said to be troubled if n ⩽ 10 and it is
doubled or n > 10 and it is trebled.

Definition. A positive integer n is said to be troubled if n ⩽ 10 and it
is doubled or n > 10 and it is trebled.

The advantage of \emph is now obvious: inside the particular
LaTeX definition environment I chose, the non-mathematical text
is italicized, so if I use \textit in order to stipulate that the word
“troubled” should be italicized, the result is that it is not distin-
guished from its surroundings and is therefore not emphasized.
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But if I use the command \emph, then LaTeX knows that I want to
emphasize the word, so it chooses a contrasting font whatever envi-
ronment it is in. The command \textit is something like a rigid
designator — it causes text to be in that font, regardless of the envi-
ronment — whereas \emph is more like a definite description — it
causes text to be in “the font that contrasts appropriately with the
surrounding font”, which varies from environment to environment.

A great advantage of “nonrigid” commands is that they make it
much easier to change the look of a document. Suppose, for exam-
ple, that a journal’s house style was to use boldface to emphasize
words in definition environments. It could have a style file inwhich
the \emph commandwas defined so as to ensure that that happened,
and there would be no need to make any changes to the source file
of the document itself.

Let me now jump to a different example. In 1988, Douglas
Hofstadter, Melanie Mitchell and others developed a program
called Copycat, with an extremely interesting architecture, which
was designed to solve simple analogy problems concerning let-
ter strings, of which a representative example is the problem
abc:abd::ijk:?, which can be read as “abc is to abd as ijk is
to what?” The class of problems of this kind is surprisingly rich,
which makes solving them an interesting computational challenge.
But here I just want to discuss what makes one solution more sat-
isfying than another.

For that purpose, let us look at the following example: abc is to
abd as abbcccdddd is to what? Here are several possible answers to
that question, together with brief justifications for each.

1. abd (replace the string by abd)
2. abdcccdddd (replace the third letter in the string by d)
3. abbcccdddd (replace the last letter by a d)
4. abccccdddd (replace the third letter by its successor)
5. abbddddddd (replace all c’s by d’s)
6. abbddddddd (replace all c’s by their successors)
7. abbcccddde (replace the last letter by its successor)
8. abbccceeee (replace the letters in the last groupby their successors)
9. abbccceeeee (replace the key parameters that define the last

group by their successors)
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It is clear that the last answer is by far the most satisfying, and
that amongst the others some are more satisfying than others, with
some of the less satisfying ones being quite laughable. For instance,
a natural reaction to the first proposed answer is “Why would one
replace every string by abd?”

A good measure of what makes one answer better than another
appears to be nonrigidity. In each case, the justification takes the
form of a description of some process that can be applied to at least
some letter strings. Some of these processes involve constants, such
as particular letters of the alphabet or particular small numbers. To
the extent that they do so, they are rigid. Others are defined in
ways that vary in a simplemanner according to the sequence, which
makes them nonrigid. For example, the second answer makes use
of the letter d and the number 3, so it is a highly rigid process, and
that is why it seems ridiculous, and similar reasoning applies, to
differing extents, to all of the first six proposals.

The analysis of the last three answers is slightly subtler, but still
involves rigidity. If we look at the sequence abbcccdddd, we very
easily spot that it can be described as one a followed by two b’s
followed by three c’s followed by four d’s. And while we do not
have a convenient language to express the thought concisely, we
definitely also notice that the letters and numbers involved in that
description were not arbitrary: we went through the first four let-
ters of the alphabet in order and the first four natural numbers in
order. We can even go up a level of abstraction and say that we
performed the same process on the natural numbers as we did on
the letters (thereby avoiding having to say twice that we chose the
first four in order).

This description is greatly preferable to describing the sequence
by simply listing it, because it is significantly less rigid. Instead of
specifying a string of ten letters one by one (as we would have to
do for a string such as rjkepgjwrt), we can regard the generation
of the sequence as itself the solution of some smaller-scale analogy
problems, such as a:bb::bb:?, together with an instruction to stop
after four steps. (We would also think of a not as “the letter a” but
as “the first letter of the alphabet”, and so on.)

Oncewe think about the sequence in this way, a natural response
to answer (7) is “Why do youwant to do something to the last letter
in the sequence?” The operation “pick the last term” is a bit too
rigid, but it can be made less so if we replace it by “pick the last
group”, which yields answer (8). Similarly, the operation “replace
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all letters in the last group by their successors” can be made less
rigid still if we go for “take the letters generated in the last stage
of the generating process and replace them by the letters in what
would have been the next stage of the generating process”.

The suggestion I would like to make in this section is that the
more abstract (that is, non-rigid) a statement is inmathematics, the
more natural it is perceived as being, and the more likely it is that
we will be convinced by confirming evidence. For example, the
variant of Goldbach’s conjecture that I suggested earlier, that every
even number is a sum of two primes as long as it is not a power
of 21,000,000,000, is not a natural statement because it depends on the
constant 21,000,000,000 (though the fact that we can express it more
concisely as 21032

makes it more natural than if we replaced it by a
number that was much harder to specify).

For amore interesting example, consider the following two state-
ments.

Statement 1. Let G be a group. If x2 = e for every element x of G, then
G is Abelian.

Statement 2. Let G be a group. If x5 = e for every element x of G, then
G is Abelian.

As it happens, the first of these statements is true and the second
is false. However, I would like to argue also that the first statement
is more natural than the second.

At first sight they seem very similar — all I have done is replace
one constant, 2, by another. However, the first statement can be
reformulated in a more abstract way as follows.

Statement 1 (Equivalent version). Let G be a group. If every element
of G is equal to its own inverse, then G is Abelian.

Once the statement is formulated like this, we see that 2 was not
really a constant: rather, it was the only number that bore a partic-
ular relation to the notion of a group. (This is similar to our earlier
recognition that the string abbcccdddd can be specified in a more
abstract way.)

The fact that 5 does not have this property has important conse-
quences for what my judgments about the second statement would
have been had I not known whether it was true or false. I would
have expected that if the second statement was true, then it would
be a special case of a more general statement such as that for any
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prime p, a group G must be Abelian if xp is always equal to the
identity. That would be a more abstract statement and therefore
more natural.

Similarly, the fact that 2 does have this property has a big influ-
ence on how I would set about proving Statement 1 if I did not
already know the proof. I would try to resist thinking of 2 as “that
number” and instead focus on its properties, so if I spotted that the
equation x2 = e implies the equation x = x−1, I would seize on that
observation as being likely to help.(18)

For a third example, consider the following two theorems from
linear algebra, and particularly their proofs.

Theorem. Let V be a finite-dimensional vector space. Then V is isomor-
phic to its dual space V∗.

Proof. Let v1, . . . , vn be a basis of V. Then define a basis v∗1 , . . . , v∗n
of V∗ as follows: if v is a vector in V, then it can be written uniquely
in the form ∑n

j=1 λjvj. Let v∗i (v) be defined to be λi. (Thus, v∗i
picks out the ith coordinate of v with respect to the given basis.)
It is easy to check that v∗1 , . . . , v∗n is a basis of V∗, and then the
map ∑

i λivi 7→
∑

i λiv∗i defines an isomorphism between the two
spaces.

Theorem. Let V be a vector space. Then V embeds isomorphically into
its second dual space V∗∗.

Proof. Let F be the field of scalars of V. For each v ∈ V we can
define a linear functional τv : V∗ → F by τv(v∗) = v∗(v). If
τv(v∗) = 0 for all v∗, then v∗(v) = 0 for all v∗, so v∗ = 0. Also,
the map v 7→ τv is easily checked to be linear. Therefore, that map
is an isomorphic embedding.

There is a very important distinction between the two proofs,
which leads mathematicians to describe the isomorphism given in
the first proof as unnatural and the isomorphic embedding given in
the secondproof as natural. Indeed, in contexts such as this one, the
word “natural” has a formal meaning (the category-theoretic con-
cept of a natural transformation) that captures the difference. The
clearest sign of the difference is the first sentence of the first proof.
One is asked to take a basis, but is not told how to do so. Indeed,

(18)And indeed it does. It is a standard fact in elementary group theory that
ab = b−1a−1 and if every element equals its own inverse then we deduce immedi-
ately that ab = ba.
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given an arbitrary finite-dimensional vector space there is no sin-
gle best method of picking a basis. (For example, consider the
2-dimensional vector space of all triples (x, y, z) ∈ R3 such that
x + y + z = 0. It is easy to find a basis, but not easy to argue of
any particular basis that it is the most natural and obvious basis to
pick.) Thus, the basis feels like a rigid choice, because it does not
relate to the space in a clear way. This is a slightly different kind
of rigidity: it is not saying that the basis is always the same regard-
less of the space, but rather that each basis one chooses exists only
in the space for which it was chosen. Mathematicians would say
that the choice is non-canonical. By contrast, the choice of τv given
v is entirely canonical — it is the obvious linear functional to build
out of v.

Returning to the example of division of the circle, we can see
why the sequences that played a role in that discussion were natu-
ral. We knew from experiment that we had a sequence that began
1,2,4,8,16. The sequence of powers of 2 can be thought of as the
solution to the easy analogy problem 1:2::2:4::4:8::8:16::16:?
(and the reason we regard the operation performed at each step
as doubling rather than troubling is that the definition of trou-
bling involves additional constants such as 3 and 10), while the
correct sequence 1,2,4,8,16,31,57,... can be defined as the sequence
of values of the lowest-degree polynomial consistent with the val-
ues 1,2,4,8,16. (Another way to pick out the sequence of powers of
2 would be to say that an = P(an−1) for some polynomial P, and
moreover P is the polynomial of smallest degree that is consistent
with the values 1,2,4,8,16, which happens to be the polynomial 2x.)

Often the naturalness of a mathematical statement is not imme-
diately apparent. The Riemann hypothesis provides an example of
this. The precise statement can be written as follows.

Conjecture (Riemann hypothesis). If ζ(s) = 0, then either s is a neg-
ative even integer or the real part of s is equal to 1/2.

At first sight, the fact that this statement is suggesting that there are
two different kinds of zeros makes it seem unnatural. However, as
Riemann showed, the statement has another formulation that lacks
this defect. The modern way to express it is to define a function ξ
by the formula

ξ(s) =
1
2

s(s − 1)π−s/2Γ(s/2)ζ(s),
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which I shall not try to explain here. Riemann showed that the
xi-function satisfies the functional equation ξ(s) = ξ(1 − s). This
property is not enjoyed by the Riemann zeta function, whichmakes
the ξ function in some ways more natural (in a different sense of
“natural” from the one I have been discussing). Better still, the
zeros of the ξ function are the zeros of the ζ function with the zeros
at negative integers excluded, so the Riemann hypothesis is equiv-
alent to the following statement.

Conjecture (Reformulation of Riemann hypothesis). If ξ(s) = 0,
then the real part of s is equal to 1/2.

But even this statement involves the constant 1/2. Is that a sign
of unnaturalness? For all sorts of reasons it isn’t. One is that the ver-
tical line through 1/2 in the complex plane is the only one that is
mapped to itself by the symmetry s 7→ 1− s of the ξ function— this
gives a way of specifying the number 1/2 in terms of the function
rather than simply as the number 1/2. Another is that, as I men-
tioned earlier, the Riemann hypothesis is equivalent to a statement
about the distribution of the primes, which says, roughly speak-
ing, that the error term in the prime number theorem is roughly
what the natural random model would predict. The appearance
of the number 1/2 in this model is closely related to probabilistic
phenomena such as that the expected end-to-end distance of a ran-
dom walk of length n is around n1/2. So again we can think of it
not as “that number” but as “the exponent that comes up when
you add together a number of independent random variables that
satisfy some commonly occurring conditions”.

As one final example, let me return to the question I left open
at the end of my discussion in §2 of the behaviour of the Ramsey
number R(k, k). There I had argued that if R(k, k) was approxi-
mately Ck for some very large k, then we would expect R(k, k) to
be approximately Ck for all very large k. I then invented an artificial
function D(k) given by the formula (2 + cos(π log2 k)/10)k. What
was unnatural about it?

One answer is that it involved various constants such as π and 10.
One could argue that π relates so closely to the cosine function that
it should not be regarded as problematic. (In fact, the absence of π
here could be argued to be less natural than its presence.) But that
still leaves 10, and the cosine function itself is also somewhat rigid
because it does not relate in any obvious way to the graph-theoretic
problem at hand, so has to be thought of as “that function”.
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Recall that we know that R(k, k) lies between (
√

2)k and 4k, or
equivalently that R(k, k)1/k lies between

√
2 and 4. The simplest

functions that are bounded above and below are constant functions,
so the most natural hypothesis, given that small values show that
R(k, k)1/k is not in fact constant, is that R(k, k) at least converges to
a constant. (Applying the nice-functions principle, I then conclude
that this hypothesis is very likely to be true.) One could go further
and argue that the most natural candidates for the value of C are

√
2

and 4, which would be saying that at least one of the arguments we
have found so far cannot be substantially improved. The next most
natural candidate is probably 2, since C has to be bigger than 1 and 2
is the simplest such number. (There are also reasons more connected
with the problem itself to think that 2 might conceivably be correct.)

§ 7. — Conclusion.
The argument I have put forward can be summarized as follows.
1. Mathematicians update their beliefs using something like

Bayes’s formula, but with vague notions such as “probable”
or “extremely unlikely” replacing actual probabilities.

2. The prior distributions and conditional probabilities are best
thought of not as probabilities that certain statements are
true, but as probabilities that certain kinds of arguments exist,
which we estimate based on our experience with finding or
not finding arguments of a similar kind in related contexts.

3. Those probabilities relate to our confidence in the original
statements because of the no-miracle principle: miracles in
mathematics have explanations, so if we have no evidence of
a certain type of miracle existing and cannot conceive of what
an explanation might be like if it did exist, then we become
confident that it does not exist.

4. Miracles are situations where an event E with a natural descrip-
tion occurs, but according to our prior distribution E is very
unlikely to occur. (Thus, whether or not E is miraculous
depends heavily on our state of knowledge. In particular, as
soon as an explanation is discovered it ceases to be a miracle.)

5. A description of an event is more natural the more abstract
and less “rigid” it is. (This too can change as our state of
knowledge changes, as additional knowledge can help us
reformulate descriptions in more abstract ways.)
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There is plenty more one could say about all of these points, but
I shall instead end with one more question. I stated the no-miracle
principle and the nice-formula principle, which play a very useful
guiding role for mathematicians when they are doing research, but
gave no justification for either. That is because I find them rather
mysterious. Why should it be that mathematics is so full of inter-
esting patterns and that these patterns so often have explanations,
some of which are remarkably deep and lead to whole new areas
of study? There seems to be something extraordinarily “produc-
tive” about the particular set of axioms and deduction rules that we
allow ourselves. With a nod to Eugene Wigner, one might call this
the unreasonable coherence of mathematics, a miraculous-seeming
phenomenon that itself demands an explanation.

Timothy Gowers,
Collège de France and the University of Cambridge.
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