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Mathematics
an Imagined Tool for Rational Cognition

Part I

BORIS ČULINA

“...numbers are free creations of the human mind;
they serve as a means of apprehending more easily and more sharply the
difference of things.”

Richard Dedekind [Dedekind, 1888, p. vii]

Abstract. By analysing several characteristic mathematical
models: natural and real numbers, Euclidean geometry, group
theory, and set theory, I argue that a mathematical model in
its final form is a junction of a set of axioms and an inter-
nal partial interpretation of the corresponding language. It
follows from the analysis that (i) mathematical objects do
not exist in the external world: they are imagined objects,
some of which, at least approximately, exist in our internal
world of activities or we can realize or represent them there;
(ii) mathematical truths are not truths about the external
world but specifications (formulations) of mathematical con-
ceptions; (iii) mathematics is first and foremost our imagined
tool by which, with certain assumptions about its applicability,
we explore nature and synthesize our rational cognition of it.
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The basic problem of the philosophy of mathematics (not math-
ematics itself) is to answer the following intertwined questions:

• Whether mathematical objects exist, and if so, in what way do
they exist?

• What is the mathematical truth and how do we establish it?

• How is mathematics applied?

This article and its sequel present a solution that can be considered
an elaboration of Dedekind’s quotation cited at the beginning of the
article. The basic theses that I intend to argue are the following:

• Mathematical objects do not exist in the external world. They
are imagined objects, some of which, at least approximately,
exist in our internal world of activities or we can realize or
represent them there.

• Mathematical truths are not truths about the external world
but specifications (formulations) of mathematical concep-
tions.

• Mathematics is first and foremost our imagined tool by which,
with certain assumptions about its applicability, we explore
nature and synthesize our rational cognition of it.

I will try to make clear what is absolutely clear to the famous physi-
cist Percy W. Bridgman: “It is the merest truism, evident at once to
unsophisticated observation, that mathematics is a human inven-
tion.” [Bridgman, 1927, p. 60]. Having practised mathematics all
my life, by vocation and by profession, just as breathingwas natural
to me, so it was natural for me to consider mathematics as a human
invention and a free creation of the human mind whose purpose is
to be a tool for our rational cognition and rational activities in gen-
eral.(1) When I decided to clarify to myself what human invention
mathematics was, it proved tome, I believe, a far more difficult task
than explaining what breathing is. In this article and its sequel, I
have outlined what I came up with along the way.

In this article I will consider as illustrative examples the classi-
cal mathematical models which are still the most important ones:
the natural number system, the real number system, and Euclidean

(1)Of course, many mathematicians do not share my opinion that mathematics
is a free creation of the human mind.
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geometry; as well as contemporary standard mathematical mod-
els: group theory, and set theory (sections 1 to 6). To quote the
famous mathematician Saunders Mac Lane: “…a philosophy of
Mathematics is not convincing unless it is founded on an exam-
ination of Mathematics itself.” [Mac Lane, 1986, p. 60]. In the
last section (Section 7) I will set out the basic characteristics of the
view of mathematics as an imagined tool for rational cognition. In
the next article, I will elaborate in more detail how mathematical
objects possibly exist and how mathematics is applied. I will also
describe how the whole structure of mathematics can be under-
stood as an imagined tool for rational cognition. Also, there I will
expose this view of mathematics to various tests as well as deter-
mine its place on the map of different views of mathematics. In
[Čulina, 2022a] there is a complete exposition in the form of a
preprint.

The terms “intuition”, “idea”, ”conception”, ”model” and ”the-
ory” will denote more and more precise stages in modelling certain
thoughts. The terms “model” and “theory” will eventually acquire
a precise meaning that deviates from the standard meaning in math-
ematical logic. They will be synonymous here and will denote a set
of axioms in a language, together with a partial interpretation of the
language. In doing so, I will give preference to the term “model”
when the emphasis is on the interpretation and to the term “theory”
when the emphasis is on axioms. Thereby, the term “interpreta-
tion” generally refers to the meanings of linguistic forms, and more
specifically to the interpretations of first-order languages. The term
“specification” generally refers to the refinement of ideas, and more
specifically to the description using a set of sentences (axioms) of
a first-order language that an interpretation of the language must
satisfy. By “internal world of activities” I mean the world that con-
sists of activities over which we have a strong control, and which
we organize and design by our human measure. For example,
these include movements in a safe space, grouping, arranging and
connecting small objects, spatial constructions and deconstructions
with small objects, talking, writing and drawing on paper, shaping
and transforming manipulative material, combining and repeating
actions,making choices, dynamics of actions and changes in the envi-
ronment subordinated to us, painting, singing, etc. This does not
include activitieswith objects overwhichwe have no strong control,
or our activities are significantly limited by the environment, such
as e.g. climbing steep rocks, building a house, etc. Although each
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person has her own specific way of organizing and designing inter-
nal activities, which depends on her as well as on the environment
to which she belongs, due to the generality of further considera-
tions, it does not matter whether we mean the internal world of
activities of an individual person or the internal world of activities
of the entire human species. The internal world of activities will be
discussed in more detail in Section 7. I would also note here that all
imagined objects are considered as concrete andnot abstract objects.
In Section 7 it will be argued that language is the bearer of abstrac-
tion and not objects.

§ 1. — Natural numbers.

Natural numbers are the result of modelling our intuition about
the size of a collection of objects. We measure the collection
through the process of counting, and natural numbers are objects
for counting. To start counting we must have the first number, to
associate it with the first chosen object in the collection. To continue
counting, after each number we must have the next new number
in order to associate it with the next chosen object in the collec-
tion. There is no special reason to sort out certain particular objects
as natural numbers. Merely for the needs of performing a calcu-
lation we sort out a particular realization. In the past those were
collections of marbles on an abacus, and today we use sequences of
decimal digits on paper and of bits in a computer. It means that for
counting it is not important how numbers are realized, but only the
structure of the set of natural numbers which enables us to count
is important: that there is a first number and that each number has
its successor. It seems that natural numbers exist in the same way
as chess figures, in the sense that we can always realize them in
some way. However, the structure of natural numbers, as opposed
to the structure of chess, brings in itself an idealization. So that
the counting could always continue, each natural number must be
followed by the next natural number. Therefore, there are infinitely
manynatural numbers. Thus, althoughwe can say for small natural
numbers that they exist in the standard sense of that word, the exis-
tence of big natural numbers is at best a kind of idealized potential
existence.

In order to precisely formulate the conception of natural num-
bers, we need a corresponding sufficiently precise language, a
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mathematical language, or even better, a first-order language.
Among other symbols, the language should contain the symbol for
the first number, the standard is “1”, and the function symbol, for
example an “S”, for the immediate successor operation (n 7→ S(n)).
This allows us to name each number. What the names denote is
not so important. It is only essential that the named objects have
the structural role of natural numbers (the names can even denote
themselves). We specify the conception by declaring certain sen-
tences of the language to be true about natural numbers. It is
not necessary to precisely specify these claims here, nor the lan-
guage in which they were made.(2) In that language, the claims
must express, inter alia, (i) that 1 is the first number, (ii) that each
number n has its successor S(n) which is a new natural number
in relation to all previous natural numbers, and (iii) that any nat-
ural number can thus be obtained. I will hereinafter call these
claims the axioms of natural numbers. In my view, the axioms
of natural numbers are neither true nor false, just as the axioms
that would describe the game of chess would be neither true nor
false. They are simply a means of specifying our ideas about
the objects we use for counting.(3) However, Gödel’s incomplete-
ness theorems [Gödel, 1931] and Lowenheim-Skolem theorems
[Löwenheim, 1915; Skolem, 1920] tell us that we cannot have a
complete (at least up to isomorphism) specification in a first-order
language, even if we include sets in the specification.(4) Therefore,
in addition to the axiomatic specification, it is necessary to have
an interpretation of the language, as well. In the case of natural
numbers, it is a partial internal interpretation — a partial inter-
pretation in our internal world of activities. The interpretation is
partial due to the idealization of the existence of extremely big num-
bers. The interpretation belongs to our internal world of activities

(2)The standard formulation consists of Peano’s axioms and recursive condi-
tions for addition andmultiplication in the first-order language of arithmetic [van
Dalen, 2013, p. 82].

(3)In [Ferreirós, 2016, Chapter 7] Ferreirós argues that Peano’s axioms are self-
evident truths about our practice of counting. Our practice of counting is not a
natural process but a voluntary activity. That is why, in my opinion, the truth
of Peano’s axioms does not derive from that practice, but from the fact that they
norm that practice, especially since they introduce an element of idealization into
the practice.

(4)Although in the classical set theory all structures of natural numbers are
mutually isomorphic, according to the Lowenheim-Skolem theorems, the classical
set theory itself has non-isomorphic interpretations [van Dalen, 2013, p. 105-106].
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because numbers are our imagined constructions that we can par-
tially, to the point of isomorphism, realize in the world available
to us: using marbles on an abacus, tallies on paper, etc. On the
other hand, even in the idealization of the total interpretation of
the language, it is necessary to additionally have an axiomatic spec-
ification, because the recursively defined truth value of sentences in
the interpretation is not a computable function [Gödel, 1931; Tarski,
1933]. Since we can never construct all numbers, the overall struc-
ture of natural numbers does not exist in the literal sense of the
word. There is only the conception of natural numbers, specified
by axioms, and partially realized in our internal world of activities.
This is the final result — mathematical model — of modelling our
intuition about natural numbers as objects for counting. It carries
with it incompleteness and the ever-present tension in mathemat-
ics between basic intuition and the constructed model, as well as
between the axiomatic specification and the constructive content of
mathematical concepts. This tension is a positive source of accept-
ing new axioms as well as improving intuition.(5)

§ 2. — Real numbers.

Through real numbers we organize and make precise our intu-
ition about the process of measuring.(6) While natural numbers are
imagined as objects for counting, real numbers are imagined as the
results of the process ofmeasuring. However, we can imagine (ideal-
ized) situations in which the process of measuring never stops—we
generate a potentially infinite list of digits, with no consecutive repe-
tition of the same group of digits after an individual step. If wewant
to have the results of such processes of measuring, we must intro-
duce, in addition to rational numbers, new results of measuring —
irrational numbers. As opposed to natural numberswhose existence

(5)This tension took amore dramatic form in the historical conflict betweenmod-
ern and classical mathematics, primarily in the confrontation between Dedekind’s
modern conceptualist approach and Kronecker’s classical constructivist approach,
as well as in the crisis in the foundations of mathematics— in the conflict between
Hilbert’s program in the foundations of mathematics and Brouwer’s intuitionism
(see, for example, [Ferreirós, 2008]). How much of this tension is present in the
Hilbert’s program itself can be read in [Sieg, 1999].

(6)In my opinion, this is the main role of real numbers, as a tool for rational cog-
nition. Various practices with real numbers and their central role in mathematics
are nicely described in [Ferreirós, 2016, Chapter 8].
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we can understand at least as some kind of an idealized potential
existence, we cannot explain the existence of irrational numbers in
this way. Although we can approximate irrational numbers by ratio-
nal numbers with arbitrary precision, their existence is outside our
means of construction — we have just imagined irrational numbers.

As is the case with natural numbers, the final mathematical
model of real numbers is a junction of axiomatic specification(7)

and partial internal interpretation of the corresponding language.
For example, in themathematicalmodelwe can identify Euler num-
ber e, the irrational number towhom the sequence

(
1+ 1

n
)n is closer,

as we increase the natural number n. Although we can approxi-
mate the number e with arbitrary precision by constructions in our
internal world of activities, it certainly does not exist in the same
way as my dog exists. It exists in the same way as an idealized
material point in classical mechanics, as a non-existing phlogiston
in a wrong theory about chemical reactions, and as Snow White
in the classical fairy tale SnowWhite and the Seven Dwarfs. However,
although our language usually has only a partial interpretation, the
classical logic of using the language assumes that it is a semanti-
cally complete language — that it has a complete interpretation:
each namenames an object, each predicate symbol refers to a binary
predicate, and each function symbol refers to a function.(8) Because
of this assumption, in thinking itself there is no difference whether
we think of objects that really exist or we think of objects that do
not really exist. That difference can be registered only in a “meet-
ing” with reality. And for mathematics there is no such meeting:
a mathematical model creates its own reality in our internal world
of imagination. However, unlike erroneous physical models, the
mathematicalmodel of real numbers can be realized approximately
in our internal world of activities in the sameway that correct phys-
ical models are realized approximately in the external world or
children’s fairy tales in real theatrical performances.

(7)The axiom of completeness ensures that any idealized measurement process
has a result. A variant of the axiom corresponding to this approach postulates that
every decimal expansion a0, a0.a1, a0.a1a2, . . . (where a1, a2, . . . are decimal digits,
whereas a0 is an integer) has a limit and that every real number is a limit of such an
expansion. All other variants of the completeness axiom postulate in other ways
these imagined objects. See, for example, [Deveau and Teismann, 2014] — the
variant with decimal expansions has the label CA18.

(8)For complete interpretations of the first-order languages see, for example,
[van Dalen, 2013, Section 3.4]
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§ 3. — Euclidean geometry.

With the appearance of non-Euclidean geometries in the 19th
century, Euclidean geometry lost the status of an a priorimathemat-
ical theory. It became only one of the possible models for physical
space, distinguished only by the fact that it is a good approxima-
tion of the space in which practical science takes place.(9) Contrary
to such a view, according to which Euclidean geometry is a part of
physics, I will argue here that just as number systems are idealized
conceptions derived from intuition about our internal activities of
counting andmeasuring, so too is Euclidean geometry an idealized
conception derived from intuition about our internal spatial activ-
ities. Since the view of Euclidean geometry presented here is not
standard, the argumentation will be more detailed than in the sec-
tions above.

Internal spatial activities should be distinguished from external
spatial activities. The former are conditioned by our human nature,
the latter additionally by the world around us. At first glance, it
seems difficult, almost impossible, to draw a clear line between
these two types of activities. However, for some activities we can
clearly determine that they belong to external spatial activities. For
example, mountain climbing is an external spatial activity because
it involves orientation in a given landscape and taking care of the
configuration of the terrain over which we move. When we are
on the different parts of a mountain road, different spatial situa-
tions will require different responses. However, as far as our ability
to react is concerned, it is the same in all places and in all direc-
tions. Of course, there is also the ubiquitous gravitational force
that makes one direction in space prominent, which we especially
have to take care of. Likewise, if there is a strong wind blowing
from a certain direction, that direction also becomes prominent to
us. However, we always attribute the appearance of differences in a
certain direction to the influence of an external factor, which shows
that a priori all directions are the same to us. Ifwe have to light a fire
by placing twigs so that they form a cone, our approach to geomet-
ric constructionwill be the same, whether we aremaking a small or
a large cone. This shows that our ideas of spatial constructions are
independent of the units we use in their construction. If for a cer-
tain selection of units a change in construction occurs, we ascribe

(9)In [Torretti, 1978], the impact of the appearance of non-Euclidean geometries
on the philosophy of geometry is analyzed in detail.
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it to an external factor. If in this way we try to identify the nature
of our internal spatial activities, as invariants to the different spa-
tial situations in which we find ourselves, then we are very close to
Delboeuf’s analysis [Delboeuf, 1860]. He considers what remains
whenwe ignore all differences of things caused by theirmovements
and mutual interactions. According to Delboeuf, in the ultimate
abstraction from all diversities of real things we gain the homoge-
neous (all places are the same), isotropic (all directions are the
same), and scale invariant (geometric constructions are indepen-
dent of size) space — the true geometric space which is different
from the real space. However, for Delboeuf this geometry is the
background geometry of real space, while for me it is the geometry
of our internal activities in space.

We can come to the same conclusion if instead of an external
argument, seeking common ground in all our external spatial activ-
ities, we use an internal argument, analysing our internal spatial
activities directly and independently of the external world. A sim-
ple introspection shows that we do not distinguish different places,
different directions and different units for spatial constructions
until the outside world forces us to distinguish them. To elimi-
nate the presence of gravity on the Earth’s surface we must look
for examples where it is negligible. In addition to the extravagant
situation of a free fall, these can be examples of activities that take
place approximately in the horizontal plane or three-dimensional
examples in which gravity is not important. For example, a child
will build his imaginary monster using Lego bricks regardless of
the location where he built it, the way he oriented it in space and
the dimensions of basic Lego bricks used in its construction. The
same indifference to location, direction, and size is present when
we rearrange the Rubik’s cube.

I believe that our most basic approach to space, the approach
inherent to us, is an a priori ignorant approach to space: all places
are the same to us (the homogeneity of space), all directions are
the same to us (the isotropy of space) and all units of length we
use for constructions in space are the same to us (the scale invari-
ance of space). These three principles of symmetry express our
basic intuition about our internal spatial activities. Any deviation
from these symmetries we attribute to the external world. Thus,
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it is precisely these principles of symmetry that determine a clear
boundary between our internal and external spatial activities.(10)

Just as internal and external spatial activities can be distin-
guished, so can the geometry resulting from these activities. In my
view of mathematics as our, in a certain sense, a priori tool of ratio-
nal cognition,(11) geometry arising from internal activities is a part
of mathematics, while geometry arising from external spatial activ-
ities is a part of physics. For example, caring about the direction
of gravity belongs to external spatial activities, so pointing out that
direction belongs to physical geometry and not to geometry aris-
ing from our internal spatial activities. Of course, in this physical
geometry, as in other physical theories, appropriate mathematics
is incorporated, but it is a different tool of rational cognition (see
Section 5) than the geometry that arises from our internal spatial
activities. In the book [Schemmel, 2016], it is nicely described how
appropriate physical geometries emerge from our external spatial
activities, which are very important for our survival.

In [Čulina, 2018], an elementary system of the axioms of
Euclidean geometry is developed. On the one hand, the system
is directly founded on the three principles of symmetry described
above, while on the other hand, through the process of algebraic
simplification, it gives an equivalent Weyl’s system of axioms of
Euclidean geometry (the axioms of Euclidean affine space) [Weyl,
1918, Chapter 1]. In this way, Euclidean geometry is character-
ized by these three principles of symmetry without any additional
assumptions (except the idea of continuity). Thus, I gave the argu-
ment that Euclidean geometry is an idealized mathematical model
derived from intuition about our internal spatial activities.

I consider this interpretation in space of our human inter-
nal activities the primary interpretation of Euclidean geometry.
However, we can preserve the sentence part of the theory but

(10)The importance of these principles has been recognized a long time ago in
the works of Delboeuf [Delboeuf, 1860], Helmholtz [Helmholtz, 1868], Clifford
[Clifford, 1873, 1885] and Poincaré [Poincaré, 1902], but in a different interpreta-
tion than the one described here. In the 17th century JohnWallis proved, assuming
other Euclid’s postulates, that the scale invariance principle saying that “For every
figure there exists a similar figure of arbitrary magnitude.” is equivalent to the
Euclid’s fifth postulate [Wallis, 1695-1699]. Also, it is well known that among all
Riemannian manifolds Euclidean geometry is characterized by these three sym-
metry principles (see, for example, [Clifford, 1873]).
(11)I will explain my views below in Section 7.
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change the interpretation. Then it does not need to be a mathemat-
ical conception anymore. It depends on a new interpretation, be
it an external or an internal one. If we ask ourselves whether the
physical space obeys the axioms of Euclidean geometry, we must
extract from spacewhatwe consider as points (maybe enough local-
ized parts of space), as directions (maybe directions of light rays),
and the distance between two points (maybe the time needed for
light to pass from one point to another). If in such an interpretation
the physical space satisfies the axioms of Euclidean geometry then
we have an experimentally verifiable theory. Its sentence part is the
same as in ourmathematical theory of the space of our human activ-
ities, so we can transfer all results to the structure of physical space.
Only the interpreted part is different. It does not belong to mathe-
matics anymore, but it is a base for an experimental verification of
the theory about the external world. However, we can change an
interpreted part of the originally imagined Euclidean geometry in
a way that it will be still a mathematical theory. And it happens in
mathematics often. Namely, when we investigate complex mathe-
matical objects which we cannot perceive so easily, for example a
set of functions of some kind, it is useful to find Euclidean struc-
ture in it. Then we can transfer our geometric intuition to that set
— think of functions as points, measure how distant two functions
are, etc. In that way we can visualize them and succeed in thinking
about them more easily and effectively.

The example of Euclidean geometry purports that only the
axiomatic part of a theory can belong to mathematics, while the
interpretation does not have to. Also, mathematical interpretation
does not have to be an idealized direct interpretation in our internal
world of activities, but it can also be an interpretation in another
mathematical model (theory).

§ 4. — Group theory.

Group theory, in addition to being an elementary part of more
complex mathematical theories, models above all our intuition
about symmetry as invariance to certain transformations. Since
different situations have different symmetries, unlike previous
mathematical models which have an intended interpretation, this
theory does not have an intended interpretation, but has intended
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non isomorphic interpretations. Thus, some mathematical mod-
els are simply sets of axioms without a specific interpretation.
However, if they are modelling some important inner intuition
about our approach to the world, as group theory does, then they
are usually very important. Probably, the most famous example is
the Riemann’s conception of geometry as a manifold with a metric
[Riemann, 1883]. These models found their application half a cen-
tury after their invention with the appearance of Einstein’s general
theory of relativity. Today, manifolds are an essential component
ofmathematics and physics. Although the applicationwas realized
so late, it had to happen, because manifolds model successfully the
basic mathematical idea about the coordinatization of investigated
objects, an idea that generalize such an efficient idea of measuring.
Although, due to their generality, the theory of groups and the the-
ory of Riemannian manifolds have no interpretation in our world
of internal activities, they grew out of intuition about the world of
internal activities, the former on the ideas of transforming objects
and combining transformations, the latter on the idea of coordina-
tization of objects.

In the language of group theory, due to the existence of non-
isomorphic interpretations, we sometimes think of a definite, and
sometimes of an indefinite (“any”) interpretation. However, the
very use of language and its logic requires that when we think in a
language, we necessarily assume that it is a semantically complete
language, no matter how we imagine the interpretation. The situa-
tion is the same as when we use variables in our thinking. Whether
we attach a certain value to a variable or not, in thinking within a
classical mathematical language we necessarily assume that it has
a certain value. However, if we think of groups in the language of
set theory, then the groups themselves are the values of variables,
not interpretations of the whole language as described above, and
we think of them differently. The language of set theory allows us
to connect and compare groups with each other, without having to
know the true nature of individual groups, but possibly their iso-
morphic copies in the world of sets without urelements. Thus, the
process of modelling the initial intuition and the way of working
with the constructed models depends on the language in which we
model the intuition.
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§ 5. — Mathematical models from other disciplines.

The source of mathematical models does not have to be an
intuition about our internal world of activities. They can also be
“borrowed” from other disciplines. The nature of our thought and
use of language, as well as the way in which we manage the vast
complexity of the world, leads to the extraction of a certain struc-
ture from such a domain. We extract from the domain certain
objects, relations and operations and we describe their properties.
If we have thus obtained an important model from that domain
then its sentence (axiomatic) part is a mathematical model impor-
tant for examination. We can use classical mechanics to illustrate
this point. Although particles, motion and forces do not belong
to mathematics, mathematics can take the structural properties of
phenomena (usually described as a set of sentences in an appropri-
ate language) and formally investigate them: the consequences (for
example, in the problem of three bodies), the equivalent formula-
tions (for example, Lagrangian and Hamiltonian formulations of
Newtonian mechanics emerged in this way), etc.

§ 6. — Set theory.

In the consideration of any objects, the consideration of the
sets (collection) of those objects naturally occurs. In mathemat-
ics, this step has a deeper meaning. Namely, the foundational
mathematicalmodellingmustmodel the very intuition aboutmath-
ematical and thought modelling itself. In the process of thought
modelling, we extract a structure from a set of objects, that is to
say, we extract some distinguished objects, and some relations and
functions over the set of objects. Therefore, the subject of the foun-
dational modelling must be the structures themselves and their
parts. We can reduce the description of the structures to the descrip-
tion of their parts. It is the standard result of mathematics that
we can describe distinguished objects by functions, functions by
relations, and relations by sets. In this way we can reduce the foun-
dational modelling to the analysis of sets. From sets we can build
all structures. Also, we can compare such structures using the func-
tions between them. The language of sets provides simple means
for describing structures and constructing new structures from the
old ones. In this way, sets give us an universal language for mathe-
matics. Furthermore, sets are often necessary for specification. For
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example, the specification of natural numbers requires the axiom of
induction, which, in its most general formulation, needs the notion
of a set. Likewise, the specification of real numbers requires the
axiom of continuity, and the specification of Euclidean geometry
requires Hilbert’s axiom of maximality, and they both need the
notion of a set. However, in what way exist the set of natural num-
bers, the set of real numbers, and the set of space points, when they
are infinite? Moreover, when we think of sets, we also consider sets
of sets. If we want to have an elegant, rounded and universal set
theory, infinite sets are naturally imposed on us, truly the whole
infinite hierarchy of infinite sets, togetherwith infeasible operations
on them.(12) How canwe understand the existence of such sets and
operations? Should we reject this theory, which has proven to be
very successful, because its objects can be realized only when they
are finite? Hilbert, who certainly knew what good mathematics
is, said the following on the Cantor’s set theory of infinite sets:(13)
“This appears to me to be the most admirable flower of the mathe-
matical intellect and in general one of the highest achievements of
purely rational human activity,” [Hilbert, 1926, p. 167].(14)

The language of set theory presupposes an intended interpreta-
tion. In addition to the fact that we can only partially realize it, the
interpretation itself is not clear to us in many ways. It is clear that
the idea of a set derives from our activities of grouping, arranging
and connecting objects and that set theory is an idealized mathe-
matical model for these activities. However, in the very finite part,
when we talk, for example, about the set containing three concrete
objects o1, o2 and o3, it is not clear what kind of object the set itself is,
let us call it s = {o1, o2, o3}. Formally, we can describe the situation
by saying that we have added a new object to the objects, which we
then call the set of these objects and which has the unique property
that only the objects o1, o2 and o3 and no other belong to it. Such
a description would correspond to a combinatorial approach and
obviously has a structuralist overtone — the very nature of sets is
not important but their relationship to other objects is important.
However, another description s = {x|x = o1 or x = o2 or x = o3}
of the same set has a different connotation. Now the set is given by

(12)An elegant exposition of the standard ZFC set theory can be seen, for example,
in [Enderton, 1977].
(13)Cantor’s exposition of his set theory can be seen in [Cantor, 1883].
(14)The complicated and at times dramatic historical development of set theory

is described in detail in [Ferreirós, 2007].
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a predicate, so it is a kind of extensional abstraction of an one-place
predicate. In this view of sets, as extensions of one-place predi-
cates, they have no structural role but have their own individual
nature in our world of meaningful linguistic forms, in the same
way that points and directions have their own individual nature
in our world of internal spatial activities. Let us note that both the
structural and individual view of sets change the initial intuition
about the impossibility of realizing infinite sets. In the structural
view, the set of all natural numbers is simply a new object. It dif-
fers from a finite set only in that there are infinitely many objects in
the membership relation with it. Natural numbers can be defined
without the concept of infinity.(15) Thus, from a structural point
of view, the formation of the set of all natural numbers is not bur-
dened by the concept of infinity, although it has infinite members.
In the individual view, the predicate “to be a natural number”, as
commented above, can be defined without the concept of infinity.
Let’s compare, for example, that predicate with the predicate “to
be an electron”. The letter predicate can be defined by a certain
experimental procedure. It is well defined regardless of whether
there are finitely or infinitely many electrons in the world. It is the
samewith the predicate “to be a natural number”: it is well defined
regardless of whether there are finitely or infinitely many natural
numbers. In the individual point of view, that predicate, as well
as any other that has the same extension, can be considered the set
of natural numbers. So, we can conclude that the formation of the
set of natural numbers is not burdened by the concept of infinity,
although it has infinite members. Thus, both in the structural and
in the individual view, the set of natural numbers is a finitely well-
formed object. The idea that a set must be “made” of its elements
is not present here at all, an idea according to which we can never
make an infinite set. Despite all the doubts related to the notion of a
set, the constructed mathematical model is very successful. Today,
ZFC axioms form its axiomatic part and the model has an intended
interpretation, although there are doubts as to what the interpre-
tation is, what we can realize and how we can realize it. Here we
only have a more pronounced tension between the basic intuition
and the finalmodel, which can ultimately lead tomodel refinement,
model change, or even separation into multiple models.(16)

(15)see, for example, [van Orman Quine, 1963, p. 75]
(16)In addition to other models of set theory that complement, weaken or change

the ZFC axioms (see [Fraenkel and Bar-Hillel, 1958] and, for newer alternatives,
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§ 7. — What mathematics is.

The conceptions described above possess all of the essential char-
acteristics of mathematical conceptions. First of all, mathematical
conceptions have a clearly defined purpose — to be successful
tools in the process of rational cognition, and in rational activi-
ties in general. This purpose significantly influences their design
and determines their value. We can use mathematical conceptions
directly, like the use of numbers, through an ideal model of interac-
tion with the world. We can use them indirectly: (i) like the use of
the Euclidean geometry — by changing the interpreted part of the
theory into an external interpretation, (ii) like the use of the group
theory — by giving just the axioms and their consequences regard-
less of interpretation, which could be the external one, or (iii) like
the use of the set theory — by organizing effectively other math-
ematical tools. Also, we use mathematical conceptions indirectly,
(iv) as constituent parts of more complex mathematical concep-
tions — as it is, for example, the case with Euclidean space as a
tangent space on a Riemannian manifold, or (v) we use them indi-
rectly in the way described above with Euclidean geometry — to
interpret them in collections of complex mathematical objects for
the purpose of making them more intuitive and more manageable.
Amultitude of specificmathematicalmodels that are used tomodel
specific problems should also be mentioned here. Such a model is
applied directly, its purpose is concrete, and its design and evalua-
tion largely depend on the problem it models.(17)

The conceptions described above purport that mathematics is an
inner organization of rational cognition and knowledge, a thought-
ful shaping of the part of the cognition that belongs to us. For
example, we organize the possible results of measurement into an
appropriate number system. The inner organization needs to be
distinguished from (but not opposed to) the outer organization of
rational cognition, a real shaping of an environment that comprises
construction of a physical means for cognition (for example, an
instrument for measuring temperature). Mathematics is a process

[Apostoli et al., 2009]), the multiverse view in set theory has recently been devel-
oped, according to which there is no “true” mathematical model for the concept
of a set, but there are various equally acceptable models [Hamkins, 2012].
(17)In the book [Carrier and Lenhard, 2017], mathematics is analysed as a means

of building specific mathematical models, while in the book [Fenstad, 2018] a gen-
eral model of such use of mathematics is given.
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and a result of shaping our intuitions and ideas about the real-
ity of our internal activities, into thoughtful models which enable
us to understand and better control the whole reality. For exam-
ple, we shape our sense for quantity into a system of measuring
quantities by numbers. Thoughtful modelling of other intuitions
about our internal human world of activities, for example intu-
itions about symmetry, flatness, closeness, comparison, etc., leads
to other mathematical models. This claimwill gain its full meaning
only when I explain what the terms “internal world of activities”,
“intuition” and “mathematical model” mean. That is the content of
the rest of this section.

In the introductory part, I briefly described our internal world of
activities as the world that consists of activities over which we have
a strong control, and which we organize and design by our human
measure. The examples I listed there are activities thatwe can easily
recognize in free children’s play.(18) These activities form the basis
of the adult world of internal activities. These activities develop as
we grow up, but this is primarily the development of their design
and conceptualization. Their presence in early development stages
indicates their biological basis.(19) They are a unique characteristic
of the human species, an essential part of our evolutionarily devel-
oped abilities by means of which, unlike other species that adapt
to the environment, we adapt the environment to ourselves.(20) Of
course, cultural evolution and social context play a decisive role in
designing and conceptualizing these activities.(21)

There aremany examples of highlighting the importance of these
activities. Dedekind talks about “the ability of the mind to relate
things to things, to let a thing correspond to a thing, or to represent

(18)In [Čulina, 2022b], it is argued that, contrary to the narrow standards ofmath-
ematics education, we best help children in their mathematical development by
providing them with an environment in which they will, in free play, and with
our unobtrusive help, develop their internal world of activities, design it, concep-
tualize it and apply it to problem-solving.
(19)The book [Lakoff and Núñez, 2000, p. 28] discusses: “ordinary cognitive

mechanisms as those used for the following ordinary ideas: basic spatial relations,
groupings, small quantities, motion, distributions of things in space, changes,
bodily orientations, basic manipulations of objects (e.g., rotating and stretching),
iterated actions, and so on.”
(20)“Man is a singular creature. He has a set of gifts which make him unique

among the animals: so that, unlike them, he is not a figure in the landscape –- he
is a shaper of the landscape.” [Bronowski, 1974, p. 19].
(21)See, for example, [Kitcher, 1983] for the influence of cultural evolution and

[Ernest, 1997; Hersh, 1997] for the influence of human society.
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a thing by a thing, an ability without which no thinking is possible”
[Dedekind, 1888, p. viii]. Hilbert sees the source of his finitist math-
ematics in “extralogical concrete objects that are intuitively present
as immediate experience prior to all thought”, and these objects are
“the concrete signs themselves, whose shape …is immediately clear
and recognizable” [Hilbert, 1926, p. 171]. Feferman writes that the
source of mathematical conceptions “lies in everyday experience
in manifold ways, in the processes of counting, ordering, matching,
combining, separating, and locating in space and time” [Feferman,
2014, p. 75]. Hershwrites: “To have the idea of counting, one needs
the experience of handling coins or blocks or pebbles. To have the
idea of an angle, one needs the experience of drawing straight lines
that cross, on paper or in a sandbox” [Hersh, 1979, p. 46]. And
so on.

Internal activities are concrete activities with concrete objects:
they take place in space and time, and in a given environment
— on the table with a pencil and paper, in a ballroom, or on a
sandy beach. They are experiential activities, but it is not an expe-
rience of the external world, but an experience of our actions in
the world available to us and subordinated to us. We experiment
not with the objects of the external world but with the possibili-
ties of our actions in the world adapted to us. In this world, Piaget
distinguishes two types of knowledge [Piaget, 1970, p. 16-17]. An
example of the first type of knowledge is when we pick up two
objects and determine that one of them is heavier. This knowledge
arose from our action performed on the objects and its source is
in these objects: it is knowledge about these objects — knowledge
about the world. Piaget calls such knowledge “physical knowl-
edge”. Butwhenweorder objects, for example byweight, this order
was created by our actions and its source is in our activities and
not in the objects. The knowledge that has its source in such activ-
ities, for example that there is always the same number of objects
no matter how they are ordered, is called by Piaget “logical math-
ematical knowledge”. Mathematical knowledge has its source in
the world of internal activities precisely in this way: it springs from
these activities themselves and not from the objects of these activ-
ities. Feferman writes: “Theoretical mathematics has its source in
the recognition that these processes are independent of the materi-
als or objects towhich they are applied and that they are potentially
endlessly repeatable.” [Feferman, 2014, p. 75]. However, we cannot
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completely separate activities from the objects of the activities: gen-
erally speaking, they depend on the objects. For internal activities,
it is important that this connection is weak. Our control over these
activities is the dominant force, rather than the influence exerted
over them by the objects.

Likewise, it is not possible to draw a clear linewhere theworld of
internal activities ends, and activities become external. An example
can be made out of constructing and deconstructing objects. When
a child does this with Lego blocks, it is surely an internal activity.
Although the structure of Lego blocks affects the possibilities of con-
struction, these are activities over which we have a strong control
and the possibility of designing them according to our own mea-
sure. Constructing and deconstructing stone walls without mortar
is certainly not an internal activity, because it requires experience
working with weights, centres of gravity and forces in contact. But
both activities are the source of the same mathematical idea, the
idea of analysis and synthesis of what we are researching: let us
examine the phenomenon by breaking it into parts, study those
parts and synthesize the knowledge thus acquired into knowledge
about that phenomenon. This idea is a mathematical idea because
it has its source in our approach to the world, not in the world itself.
Although it is present in both mentioned activities, in the inter-
nal activity it takes a clear and separate form, while in the other
activity it is connected with the physical content. Because of the
freedom we have in the world subordinated to us, I believe that
we can always internalize external activities, represent them with
internal activities in which the mathematical idea will come to its
full expression.

To conclude, although it is about concrete activities in a real
environment, due to the subordination of that environment to our
activities and due to the strong control over these activities and the
strong possibilities of their shaping, we can talk about these activ-
ities as our internal world of activities, and even about a certain
kind of a priority of that world.

The concept of intuition is not an intuitive concept. In [Kitcher,
1983, p. 49] Kitcher writes: “’Intuition’ is one of the most over-
worked terms in the philosophy of mathematics, Frege’s caustic
remark frequently goes unheeded: ‘We are all too ready to invoke
inner intuition, whenever we cannot produce any other ground of
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knowledge.’”(22) In [Hersh, 1997, p. 61-62], Hersh gives awhole list
of different and unclear meanings of this term, but also emphasizes
its central role in the philosophy of mathematics: “1. All the stan-
dard philosophical viewpoints rely on some notion of intuition., 2.
None of them explain the nature of the intuition that they postu-
late., 3. Consideration of intuition as actually experienced leads to
a notion that is difficult and complex, but not inexplicable., 4. A
realistic analysis of mathematical intuition should be a central goal
of the philosophy of mathematics.”. However, intuition about our
internal world of activity is completely clear, it is intuition in the
original sense of that word — “immediate awareness” — devoid
of any ambiguities and misunderstandings. In my opinion, mathe-
matical intuition is precisely this intuition.(23)

Major mathematical models, like the models described above,
arise from intuition about our internal activities and organization.
It is from these concrete activities that the idea of an idealized
world emerges, the world that expands and supplements the inter-
nal world of activities.(24) In his book [Mac Lane, 1986], Saunders
Mac Lane describes this process on a multitude of examples. The
table on page 35 of the book shows a whole list of examples of
activities from which certain ideas are born, and from these ideas
mathematical concepts andmodels arise. For example, movements
contribute to the idea of change, whose formulation contributes
to the concepts of rigid motion, transformation group and rate of
change; estimating contributes to the ideas of approximation and
closeness, and their formulation contributes to the concepts of con-
tinuity, limit and topological space. However, what is the nature of
idealizedmathematicalmodels? What is the nature of the irrational
numbers that Dedekind “creates” to fill the ”gaps” in the linearly
ordered field of rational numbers [Dedekind, 1872]? Hilbert writes
(22)For example, Brouwer in his First act of intuitionism [Brouwer and Heyting,

1975, p. 509]writes: “…intuitionist mathematics is an essentially languageless
activity of the mind having its origin in the perception of move in time, i.e. of the
falling apart of a life moment into two distinct things, one of which gives way to
the other, but is retained bymemory. If the two-ity thus born is divested of all qual-
ity, there remains the empty form of the common substratum of all two-ities. It is this
common substratum, this empty form, which is the basic intuition of mathematics.”
(23)This understanding ofmathematical intuition is fundamentally different from

Kant’s or Gödel’s [Gödel, 1964] understanding of intuition.
(24)The very creation of ideas is largely an unconscious process: “Most thought

is unconscious …inaccessible to direct conscious introspection. We cannot look
directly at our conceptual systems and at our low-level thought processes.”
[Lakoff and Núñez, 2000, p. 5].
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about infinity as a paradigmatic example of an ideal mathematical
element: “…nowhere is the infinite realized; it is neither present
in nature nor admissible as a foundation in our rational thinking
…The role that remains to the infinite is, rather, merely that of an
idea — if, in accordance with Kant’s words, we understand by an
idea a concept of reason that transcends all experience and through
which the concrete is completed so as to form a totality …” [Hilbert,
1926, p. 190]. In [Feferman, 2014, p. 4] Feferman writes: “The basic
conceptions of mathematics are of certain kinds of relatively simple
ideal world pictures that are not of objects in isolation but of struc-
tures” and “The basic objects of mathematical thought exist only as
mental conceptions”. For Hersh, mathematical objects are “mental
objects with reproducible properties” [Hersh, 1997, p. 66].

I consider all the above descriptions of mathematical objects and
concepts to be insufficiently clear because they refer to insufficiently
clear psychological terms. The same applies to other descriptions
of mathematics as a human invention, which I found in the litera-
ture. My view of the nature ofmathematicalmodels stems frommy
view of the essential role of language in thinking. My view of the
essential role of language in thinking has its inspiration primarily in
the works of von Humboldt [Humboldt, 1836] andWhorf [Carroll,
1956], and is explained in detail in [Čulina, 2021]. According to this
view, language is not only a medium for expressing and commu-
nicating thoughts, but a medium in which thoughts are realized, a
medium inwhich thoughts take their completed form. In thewords
of von Humboldt: “Language is the formative organ of thought.
Intellectual activity, entirely mental, entirely internal, and to some
extent passing without trace, becomes, through sound, external-
ized in speech and perceptible to the senses. Thought and language
are therefore one and inseparable from each other. But the former
is also intrinsically bound to the necessity of entering into a union
with the verbal sound; thought cannot otherwise achieve clarity,
nor the idea become a concept. The inseparable bonding of thought,
vocal apparatus and hearing to language is unalterably rooted in
the original constitution of human nature, which cannot be further
explained…without this transformation, occurring constantly with
the help of language even in silence, into an objectivity that returns
to the subject, the act of concept formation, andwith it all true think-
ing, is impossible.” [Humboldt, 1836, p. 50].

It is also important to point out here that, concerning thinking,
the abstractions are the language abstractions, and not thinking
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about the so-called abstract objects. We talk about concrete objects
(which can be real or imagined), and abstraction is achieved
by extracting certain predicate and function symbols with which
we talk about objects. For example, we count using concrete
objects. Thus, the language of arithmetic talks about concrete
objects (whose nature is not important to us), and with the lan-
guage itself we achieve the appropriate abstraction. The language
of arithmetic separates what is important to us whenwe use objects
as numbers (first number, successor, predecessor, comparison, …)
from what is not important (e.g., size of marbles if we use collec-
tions of marbles for numbers, or font of decimal digits if we use
sequences of decimal digits for numbers).

In this way of looking at the nature of thinking, which in its
final effect is the creation and use of language, we can only real-
ize mathematical models by building an appropriate mathematical
language. By choosing names, function symbols and predicate
symbols, we shape the initial intuition into a structured concep-
tion. Since the conception usually goes beyond our constructive
capabilities, the constructed language has only partial interpreta-
tion, and that interpretation is internal — the interpretation in our
internal world of activities. Since the interpretation is only partial,
and because the imagined domain of interpretation is usually infi-
nite, we cannot determine the truth values of all sentences of the
language. Therefore, we must further specify the conception by
using an appropriate set of axioms. Thus, the final mathematical
model (theory) is a junction of axioms and partial internal inter-
pretation of an adequate language. Sometimes, as we have seen
on the example of the group theory, a mathematical model can
be reduced to a set of axioms without an internal interpretation,
although it arose from a corresponding intuition about the world
of internal activities. Sometimes, the internal interpretation can be
a total interpretation in another mathematical theory, as we have
seen on the example of Euclidean geometry.

This way of looking at mathematical models can be acceptable
to those who believe that mathematical concepts exist even with-
out language. Given the concrete nature of language, unlike the
vague nature of mental phenomena, they can accept mathematical
language as a convenient representative of mental conceptions. I
would also like to point out here that viewing abstract thinking as
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the creation and use of language does not mean denying the com-
plex thought processes that take place behind it. This is a functional
view: only the final effect of thinking is considered.

Furthermore, we must not forget that although a mathemat-
ical model is the final product of modelling an intuition about
our internal world of activities, in real mathematical practice it
is never isolated from the source from which it originated. This
is especially important because a mathematical model, generally
speaking, is not complete — there are multiple interpretations that
are extensions of partial interpretation and that satisfy axioms; and
intuition always leaves room for completion. In addition to test-
ing a mathematical model as a means of rational cognition, it is
also tested by how well it models the initial intuition, i.e. how
well its consequences correspond to the intuition from which it
emerged. In [Lakatos, 1976], Lakatos clearly demonstrated the
importance for mathematics of this internal testing and revision of
mathematical models (Lakatos calls this activity quasi-empirical
mathematics). Feferman [Feferman, 2014] distinguishes mathe-
matical conceptions by how close they are to everyday practice.
The more distant they are, the less clear he considers them. For
those conceptions that are completely clear, such as the concep-
tion of natural numbers, he believes that every statement within
such a conception has a definite meaning, and thus has a truth
value, regardless of whether we are able to determine its truth
value or not, so the corresponding logic is the classical first-order
logic. For those conceptions at the other end of clarity, such as
the set theory, which lack some aspect of definiteness, he believes
that the concept of truth may be partial and that the appropriate
logic is semi-intuitionistic. Similarly, Ferreirós [Ferreirós, 2016] dis-
tinguishes mathematical conceptions according to whether their
truth is based in our cognition and direct practice, such as the
conception of natural numbers (Ferreirós then speaks of elemen-
tary mathematics characterized by certainty) or require additional
hypotheses, such as the conception of the continuum (Ferreirós
then talks about advanced mathematics, which is characterized by
the presence of hypothetical statements — statements that gain or
lose their objectivity through mathematical practice). The newer
philosophy of mathematics, the so-called philosophy of mathe-
matical practice, devotes special importance to these processes of
interaction of mathematical models and basic intuitions, as one of
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themain sources ofmathematics (see, for example, [Ferreirós, 2016;
Mancosu, 2008]).

Although I consider it important how strongly mathematical
models are connected to the internal world of activities, my view
of mathematical models is more uniform. In my opinion, the basic
criterion for evaluating mathematical models is their success as a
tool of rational cognition. Seen in this way, there is no difference,
for example, between the arithmetic and Hilbert spaces, although
their connection to the internal world of activities is different. Also,
in my opinion, there is no difference in the meaning of the truth of
differentmathematicalmodels. Tome, all mathematical statements
are specifications, whether they specify what we will do with nat-
ural numbers in our internal world of activities, or whether they
specify the truth of the continuumhypothesis. From such an under-
standing of the truth of mathematical concepts, it follows that the
logic of mathematical models is classical logic, although perhaps
in some situations, with regard to the problem that is being solved,
it makes sense to look at mathematical models with non-classical
logics.

Just as mathematical models are not isolated from the sources
from which they arose, they are not isolated from each other either.
Set theory is a natural environment for formulating and comparing
mathematical models. In such an approach, axioms become the
definition of a certain type of structure. However, set theory anal-
yses the described structures in a uniform way, without going into
their nature, whether they are extracted from the external world or
from the internal world of our activities. Thus, although it gives an
elegant mathematical description, set theory can also hide the true
nature of mathematical models.

Mathematics is largely an elaborated language. The “magic” of
mathematics is largely the “magic” of language. Inferring logical
consequences from axioms, we establish what is true in a mathe-
matical model. This can be very creative and exciting work and it
seems that we discover truths about an existing exotic world, but
we only unfold the specification. The key difference from scientific
theories is that the interpretation here is in our internal world of
activities and not in the external world. The external interpretation
of a scientific theory enables us to test the theory, whether it has a
power of rational cognition of nature. If the theory has such power
then at least some objects of the theory exist in the primary sense of
the word and at least some sentences of the theory are truths about
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nature. If the language does not have such a part, and that is the
case with mathematics, then the objects we are talking about exist
only within the conception (story), although they do not exist in
the external world. Equally, if the language does not have an exper-
imentally verifiable part then sentences we consider truewithin the
conception are not true in the external world. We cannot exper-
imentally verify that || + || = |||| (2 + 2 = 4), not because it
is an eternal truth of numbers, but because it is the way we add
tallies. Likewise, we cannot experimentally verify that (x2)′ = 2x
because it is the consequence of how we imagined real numbers
and functions. Mathematical objects are, possibly, through a partial
internal interpretation, objects extracted from our internal world
of activities, and mathematical truths are, possibly, through a par-
tial internal interpretation, truths about our internal activities.(25)
We are free to imagine any mathematical world. The real external
existence of such a world is not important at all; all that matters
is to be a successful thought tool in the process of rational cogni-
tion. In Cantor’s words, “the essence of mathematics lies precisely
in its freedom” [Cantor, 1883, p. 66]. The only constraint is, inside
classical logic, that conceptions must not be contradictory. For
Hilbert, in mathematics to exist means to be free of contradictions.
In Hilbert’s words: “the proof of the consistency of the axioms is
at the same time the proof of the mathematical existence”, [Hilbert,
1900, p. 265]. In Dedekind’s words, “numbers are free creations of
the human mind” [Dedekind, 1888, p. vii].

These views are in sharp contrastwith historical views thatmath-
ematical truths exist really in some way and that we discover them
and not create them. Historically, this change of view occurred
in the 19th century with the appearance of non-Euclidean geome-
tries. The new philosophical view of mathematics has freed the
human mathematical powers and it has caused the blossoming of
modern mathematics. It is a nice example of how philosophical
views can influence science in a positive way. According to the old
views mathematical truths are a particular kind of truths about the
world. An exemplar is the Euclidean geometry — according to the
(25)Some statements get their truth through the partial interpretation of language,

for example that 2+2 = 4, while for some statements the partial interpretation is
not enough to determine their truth (e.g. the axiom of the completeness of real
numbers or the continuum hypothesis). Then the assignment of truth to these
statements is, at least in part (the axiom of the completeness of real numbers) or
completely (the continuum hypothesis), a specification of an idea that transcends
the internal world of activity.
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old views, it discovers the truths about space. The appearance of
non-Euclidean geometries, which are incompatible with Euclidean
geometries but are equally logical in thinking and equally good
candidates for the “true” geometry of the world, has definitely sep-
arated mathematics from the truths about nature. It has become
clear thatmathematics does not discover the truths about theworld.
If it discovers the truths at all they are at best the truths about our
own activities in thatworld. Frommypersonal teaching experience,
I know that looking at mathematics as a free and creative human
activity is a far better basis for learning mathematics than looking
at it as an eternal truth about an elusive world. Claims that mathe-
matical objects exist in the external world, real or special, and that
mathematical truths are truths about such a world, are unfounded
and lead to religion. Such a belief can of course be very inspir-
ing and can produce very powerful mathematics, but mathematics
itself is a human creation, in its final form a junction of axioms and
a partial internal interpretation of an adequate language.
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