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The philosophical significance
of algebraic geometry(∗)

ALBERTO PERUZZI

Abstract. This paper explores the philosophical significance of
algebraic geometry by addressing Federigo Enriques’ question on
the relation between logic and intuition. Through a historical
and conceptual analysis, it traces the transition from the Italian
school of algebraic geometry to the abstract frameworks developed
by Grothendieck and Lawvere. The article highlights how key
categorical notions — such as schemes, sheaves, and toposes —
transform the interplay between geometry and logic, allowing log-
ical principles to be internalized within geometric structures. It
argues that the philosophy of mathematics cannot be reduced to
meta-mathematical reflection alone, since algebraic geometry itself
generates conceptual innovations with direct philosophical import.
Ultimately, the paper shows that algebraic geometry reshapes the
foundations of mathematics by dissolving the separation between
formal rigor and spatial intuition and providing support to the rea-
sonable effectiveness of “conceptual mathematics”. This approach
not only provides an answer to Enriques’ question but also defines
a new sense for the foundations of mathematics, where logical
principles are intrinsically linked to the geometric structure of a
mathematical universe.

Keywords. Algebraic Geometry, Logic, Topos, Adjoints,
Foundations of Mathematics, Enriques, Grothendieck, Lawvere,
Conceptual Mathematics, Philosophy.

(∗)This text is an extension of the 2016 Enriques Lecture, delivered
on 14 December of that year at the University of Pisa. I would like to
thank Franco Turini, then Director of the Department of Informatics at the
University of Pisa, for his welcome, andMarco Franciosi, who brought the
greetings of the Department of Mathematics, for the words with which
he introduced my lecture. Special thanks go to the memory of Ornella
Pompeo Faracovi, then Director of the Centro Studi Enriques in Livorno,
who devised the entire cycle of Enriques Lectures.
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§ 1. — An overview.

[...] the usual question, whether mathematics should
rather educate intuition or logic, is vitiated by an imper-
fect view of the value of teaching. In fact, the assumption
of this question is that logic and intuition can be sepa-
rated as distinct faculties of intelligence, whereas they
are rather two inseparable aspects of the same active pro-
cess, which refer to each other.

In these words of pedagogical intent, taken from an article by
Federigo Enriques, published in 1921, [11], the necessity of over-
coming the Kantian dichotomy within the plane of the a priori,
between mathematical intuition and logic, is envisaged. Enriques
did not subscribe to the reduction of mathematical truths to logical
truths, but neither did he want to re-found logic through the adop-
tion of constructive constraints based on a special type of intuition,
so his idea diverged as much from the logicism espoused by the
neo-positivists(1) in the 1920s as from intuitionism.

Enriques’ invitation to recognise the essentially composite nature
of mathematical knowledge raises an immediate question:

(*) Can the link between logic and intuition be specified mathematically?

In order to reduce the vagueness of the question, it is necessary
1) tomake explicit what ismeant by ’logic’, 2) tomake explicit what
is meant by ’intuition’ and finally 3) to specify the supposed link:
condition 1) requires an appropriate formal language in which to
express the logical principles; condition 2) requires, in order to
keep to what Enriques intended, that intuition be anchored to ’spa-
tiality’ and, possibly, to its characters that are expressible in terms
of algebraic geometry; condition 3) requires a mathematical formu-
lation of the link between logical structure and geometric structure.
Enriques was especially aware of the algebraic approach to logic,
and he was obviously aware of the multiplicity of geometries, but
equally obviously could not envisage a correspondence between
logical properties and topological properties.

(1)In the current English lexicon of the philosophy of science, the tern ‘logical
empiricists’ is much more frequent than the terms ‘logical positivists’, ‘neo-
positivists’ or ‘neo-empiricists’, although strictly speaking there is no empiricism
that can be called ‘logical’, thus each of these three less frequent terms seems to be
preferable.
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M×Φ The philosophical significance of algebraic geometry 3

Yet, a positive answer to the question (*) came precisely from
the subsequent development of the area of mathematics in which
Enriques obtained relevant results, namely, algebraic geometry,
in which algebraic varieties, defined as sets of points which are
(common) zeros of (systems of) polynomial equations, are studied.
This response took shape mainly thanks to the pioneering ideas of
Alexander Grothendieck and Bill Lawvere, as well as, of course, the
contribution of manymathematicians whomade use of those ideas.
But the theoretical path to arrive at such an answer was a long one,
and in order to understand its meaning, it is appropriate to retrace
its main steps.

Together with Corrado Segre, Guido Castelnuovo and Francesco
Severi, Federigo Enriques was one of the major representatives
of the ”Italian school of algebraic geometry”, [6] whose initiator
is recognised in Luigi Cremona, and for a long period of time,
from 1885 to the year of his death in 1946, Enriques gave great
impetus to research in this area by contributing to the classifica-
tion of algebraic surfaces in terms of invariants with respect to
birational transformations—a result that ensuredEnriques interna-
tional notoriety. His prestige then seemed to be undermined by the
need for greater rigour (which Segre had already called upon the
’volcanic’ Enriques), by the use of topological methods (Solomon
Lefschetz) and abstract algebraicmethods (EmmyNoether), which
were put to use after 1945 by the ’French school’ (Jean-Pierre Serre,
André Weil, Alexander Grothendieck), to the detriment — at first
sight — of intuition. But the contribution of the Italian school
was later re-evaluated by further advances in algebraic geometry,
thanks especially to David Mumford and Igor Shafarevich, [30],
[43]. Some of the concepts employed in ’abstract’ algebraic geom-
etry from the 1940s onwards are due to the work of Oscar Zariski,
who had studied in Rome in the 1920s under Castelnuovo before
emigrating to the United States. It is no coincidence that Zariski
has been described as ’the last of the great classical Italian geome-
ters and the first of the great modern geometers’.(2) It was, in fact,
Zariski who in his 1935 treatise, [44] set himself the task of making
rigorous proofs of the results obtained by the Italian school.

If the numerous works that Enriques dedicated to the classifica-
tion of algebraic surfaces have justified his fame in the mathemati-
cal sphere, outside of that sphere his notoriety was due above all to

(2)[1] p. 171. For a biography of Zariski, see [31].
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the breadth of the reflection he conducted on science, [9] seen from
a historical perspective, as Ernst Mach and Pierre Duhem already
suggested. More specifically, in such a perspective are (A) his inter-
est in the history of mathematics and, more specifically, of logic,
[8], (B) his commitment to innovating the teaching of mathemat-
ics, as witnessed in [5], (C) his proposal of a framework within
which a fruitful dialogue between science and philosophy could
take place, once distance is taken from(anti-scientific) idealism and
(anti-philosophical) positivism, [10].(3)

Leaving aside the manner in which Enriques articulated his ped-
agogical commitment to (B), some minimal indications about (A)
and (C) are appropriate.

Ad (A). While Mach and Duhem had attributed theoretical
value to the analysis of the historical roots of mechanics, Enriques
was inclined towards a reconstruction that was not ’thesis-based’,
in order to document a more articulate relationship between phi-
losophy and science, and specifically between philosophy and
mathematics, throughout history. His collaboration with a young
physicist, Giorgio de Santillana, who was passionate about the
origins of science in Greek thought, should be seen in this light.
Enriques ensured that Santillana was called to teach in Rome and
with him he began to write a History of Scientific Thought, which
stopped at the first volume (1932), [12] because Santillana, from a
Jewish family like Enriques, emigrated to America two years later,
where he published, in English, thoseworks of a historical-scientific
nature that made him famous.

Just as Zariski deserves the merit of having contributed, among
the first, to ferrying the research of the Italian school of alge-
braic geometry towards ’modernity’ (in the sense of Bartel van
der Waerden), Santillana can be credited with having given sub-
stance to Enriques’ ideas in the field of the history of science. It is
a pity that the various texts on the history of science that appeared
in English after the Second World War and inspired by the neo-
positivist conception, when they refer to Santillana’s investigations,
forget his mentor, even though the jointly signed Compendium of the
History of Scientific Thought was published in 1937.(4)

(3)To foster this dialogue, Enriques organised the Fourth International Congress
of Philosophy in Bologna in 1911, in the hostility of a significant part of the Italian
philosophical milieu.

(4)Little appreciation of Enriques’ impetus for investigations in this field can also
be found in original Italian-language texts bearing a similar title.
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Ad (C). The flowering of studies on Enriques’ thought over the
last forty years, thanks in particular to Ornella Pompeo Faracovi,
[40] has made it possible to highlight multiple aspects of the
dialogue between science and philosophy as hoped for by the
mathematician from Livorno and, after a long period in which
his epistemological perspective had been dismissed as an unlikely
combination of psychologism and physicalism, it is now possible
to re-evaluate those ideas in the light of the centrality that cogni-
tive sciences have acquired. That dialogue stemmed, for Enriques,
from the need to analyse concepts taking into account their gen-
esis and the multiplicity of their potential developments, in view
of a ’scientific philosophy’ finally capable of being translated into
a teaching methodology enriched by historical-epistemological
awareness. Enriques sought support in vain in the Italian philo-
sophical milieu. His project soon clashed with the dominant
idealism, as well as with a crude positivism widespread among
scientists. It is significant that already in the 1930s Enriques also dis-
tanced himself from the neo-positivism configured by the Vienna
Circle. If the importance of the logical analysis of language escaped
him, he avoided the risk of a total ’linguisticisation’ of philosophy
that, in the footsteps of Wittgenstein, Moriz Schlick and Rudolf
Carnap had outlined.

Unfortunately, Enriques failed to elaborate a clear framework of
ideas as an alternative to old and new positivism. The project of
a ’scientific philosophy’ was not specified by him even limited to
the mathematical sphere; and in any case, any such attempt would
have hinged on the interconnections between geometry and alge-
bra rather than on those between logic and set theory,(5) while to
the mathematicians who in the early 20th century paid attention
to ’foundational’ problems, such an attempt would have appeared
retrograde: the idea of founding mathematics on a basis of incon-
trovertible certainty was animated by the conviction that this basis,
provided by a logical and set-theoretic approach, removed any
appeal to geometric intuition.(6)

If the foundational framework has changed, it is mainly
due to the development of concepts introduced by Alexander
Grothendieck, when he used category theory to solve problems
in algebraic geometry. It was, however, Bill Lawvere who first

(5)A concise overview of Enriques’ philosophical ideas is provided in [37].
(6)Yet Gottlob Frege himself, in manuscripts of 1924-25, returned to assign geo-

metric intuition a status irreducible to logic.
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realised that those concepts were relevant to the foundational ques-
tion and prefigured a direct link between logic and geometry, such
that the demands of constructiveness picked up by ’intuitionistic’
logic were embedded in the structure of an arbitrary topos.

The purpose of the following pages is to show that the devel-
opment of abstraction in algebraic geometry, first with algebraic
methods (ring theory) and thenwith categorical methods, allowed
Lawvere to state that ”Algebraic Geometry = ”Geometric Logic”,
[21] and that this specific unification of logic and geometry makes
a first, partial, positive answer to the question (*), in view of a more
comprehensive answer, once the task of formulating in mathemat-
ical terms the characters of the kinesthetic patterns that underlie the
understanding of the meaning of any proposition has been com-
pleted, [33].

After a reference, in §2, to the idea of a ”conceptualmathematics”
(from EmmyNoether to Grothendieck and finally to Lawvere), the
salient steps along the path from algebraic geometry to logic will be
described, highlighting five ”key concepts” that emerged along this
path, which are endowed with foundational scope and, together,
identify part of the philosophical meaning that can be attributed
to algebraic geometry, without assuming that they exhaust it:
more specifically, § 3 will give a concise idea of the path that led
Grothendieck to the notion of topos, and § 4 will describe both the
salient points of the connection with logic discovered by Lawvere
and the newmeaning that Lawvere gave to the foundations ofmath-
ematics. In order to appreciate, by contrast, the distinctive features
of this approach, the main ways in which the relationship between
geometry and philosophy has been historically configured will be
recalled in § 5. Finally, in § 6, some objections to this approach and
some further lines of development will be mentioned.

§ 2. — The idea of conceptual mathematics.

Between Enriques’ approximate philosophical framework and
the specificity of his work in algebraic geometry, a profound gap
remained. The other mathematicians of the Italian school of alge-
braic geometry did not share his need for dialoguewith philosophy,
much less were they interested in filling the gap. But, like Enriques,
they avoided engaging in the debate on foundations that had origi-
nated from Cantorian set theory, even though in the preface to the
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M×Φ The philosophical significance of algebraic geometry 7

first volume (1893) of the Grundgesetze Frege had already stigma-
tised the widespread opinion that any philosophical consideration
is out of place in mathematics, and vice versa. Conversely, the task
of consolidating the specific foundations of an extended algebraic
geometry was little felt by those interested in foundations in gen-
eral.

The line of logicism inaugurated by Frege had been corrected
by Bertrand Russell with the (ramified) theory of types in order
to avoid paradoxes. Opposed to this line, far removed from mathe-
matical practice, were the line promoted byErnst Zermelo, oriented
towards the formulation of a system of axioms that expressed
the principles for generating the universe of sets, and the meta-
mathematical line of David Hilbert’s formalism. There was no
lack of critical positions towards the ‘Cantor’s paradise’ — to use
Hilbert’s expression — such as those expressed by Henri Poincaré
(partly taken up by Russell) and Luitzen E. Brouwer, respectively,
but these positions prevented the conservation of all the results
obtained in ’classical’ mathematics. Certainly, Enriqueswas unwill-
ing to pay such a price, but he did not adhere to logicism, nor did he
commit himself to follow the lines of Zermelo or Hilbert, perhaps
in the idea that (algebraic) geometry was safe from those contro-
versies.

The Hilbertian call for rigour also had repercussions in this area,
however, thanks to a specific innovation: the notion of ideal in the
theory of rings. It was Emmy Noether who gave impetus to rigour
through the development of ’abstract’, axiomatically exposedmeth-
ods. But among the many possible ways of mathematical abstraction,
how to make the selection? Noether’s idea was that the validity, as
well as the fruitfulness, of an abstraction depends on its exportabil-
ity to areas ofmathematics other than that inwhich itwas originally
motivated. This idea, summarised, in German, by the Russian
topologist Pavel Alexandroff, under the term begriffliche Mathematik
(conceptual mathematics) was picked up by Grothendieck and
later taken up by Bill Lawvere and Stephen Schanuel, who not sur-
prisingly entitled their introductory text on category theory, [22]
Conceptual Mathematics.

In algebraic geometry, the rigour provided by an axiomatic
approach became all the more pressing the more one abstracted
from the reference to curves and surfaces immersed in ordinary
three-dimensional space. In the projective environment, one could
still appeal to geometric intuition, but once out of this environment,
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one had to privilege algebra over geometry. In fact, algebraic meth-
ods fuelled a growing abstraction, freeing algebraic geometry from
the privilege accorded to C, the field of complex numbers, and
envisaging its development over any algebraically closed field K.

As already noted, the specific task of providing a solid founda-
tion for algebraic geometry was little perceived by those concerned
with the foundation of mathematics as a whole: arithmetic came
before algebraic geometry, so the focus was on the notion of (nat-
ural) number and from this shifted to the notion of set and its
axiomatic characterisation, focusing on the axiom of choice, the
principle of comprehension, and proofs by reductio ad absurdum,
and not on principles and methods peculiar to algebraic geometry.

The flowering of the French school of algebraic geometry from
the 1940s onwards brought with it a further increase in abstrac-
tion, which reached its peak with Grothendieck. The notions he
introduced were aimed at solving various specific problems but
acquired a broader sense thanks to Grothendieck’s efforts to give
algebraic geometry a new, systematic structure,(7) to the point of
acquiring, with Lawvere, direct relevance to the foundations of
mathematics in its entirety, in a way that suggests how to fill the
gap left by Enriques.

Before mentioning the features of Grothendieck’s approach that
are relevant for this purpose, it is possible to get an idea of his
working method, in accordance with his use of category theory,
through a metaphor he uses in Récoltes et Semailles, [17] when he
likens a mathematical problem to a walnut to be cracked: there
is the method of putting the walnut on the anvil and beating on
the shell with a hammer (the use of a common nutcracker is a
more convenient variant), but there is also another method, which
Grothendieck made his own and which he describes as follows:
”on plonge la noix dans un liquide emollient, de l’eau simplement
pourquoi pas, de temps en temps on frotte pour qu’elle pénètre
mieux, pour le reste on laisse faire le temps”.(8)

(7)As reflected in the structure of EGA, [15], and the pioneering research con-
ducted in the seminar held by Grothendieck at the Institut des Hautes Études
Scientifiques (IHÉS) in Bures-sur-Yvette (Paris), with particular reference to SGA
4, [16]. The legacy of those ideas was then framed in reference texts such as [43]
and [18].

(8)Again to illustrate how an increase in abstraction allows ’concrete’ problems
to be solved, Grothendieck made use of a similar metaphor: that of the high tide,
whereby water penetrates a substance that seemed resistant to penetration.
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Grothendieck adds, that in the development of new concepts for
algebraic geometry he was guided not by the intention of obtaining
a particular domain-specific result but by the idea of developing
concepts and methods that in the future could also be reused in a
different and broader domain, beyond that in which they had been
used to open the nut, i.e., to provide a solution to a problem — per-
fectly in line with the Noetherian idea of begriffliche Mathematik.

Putting the nut in the water meant using categorical concepts
to solve algebraic geometry problems by immersing them in an
’abstract’ universe-of-discourse, as is, for example, a topos. This
same method proved fruitful even beyond the original scope of
the problems Grothendieck wanted to solve: it was Lawvere who
grasped the fruitfulness of the concepts andmethods introduced by
Grothendieck in the foundational sphere, going so far as to identify
the properties that define any topos, understood by Grothendieck
as a ’generalised space’, of which the universe of sets is only a par-
ticular case.

§ 3. — Towards the concept of topos.

The framework in which the Italian school of algebraic geom-
etry moves is identifiable with the complex projective space of
dimension n. It was Luigi Cremona who had adopted an algebraic
approach to projective geometry by operating a generalisation of
projective transformations that consisted in considering the class
of all birational transformations (invertible rationals, expressed in
coordinates) of a space, in order to achieve a classification of spe-
cific geometric entities in terms of what is invariant with respect to
these transformations. Guido Castelnuovo and Federigo Enriques
focused their attention on families of curves on a surface and, in
particular, Enriques was deeply involved in the project of their clas-
sification. Within a few decades, a vast body of knowledge, notions
and methods was thus created that needed a stable, rigorous struc-
ture. This need was accompanied by another: that of achieving
results of a more general scope. This meant no longer confining
oneself to the field of complex numbers.

Oscar Zariski and André Weil’s pioneering investigations in this
direction established close links with topology and number the-
ory. Zariski defined a topology (called ’Zariski’s topology’) on
the spectrum Spec(R) of a commutative ring R, i.e. on the set of
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prime ideals of R: the closed sets Z(I) are the sets of prime ide-
als containing an ideal I. Given a ring of polynomials in a fixed
number of indeterminates with coefficients in R, the ideal gener-
ated by an irreducible polynomial is prime, and the importance of
the spectrum properties is immediate because an algebraic variety
consists precisely of the zeros of ideals in a ring of polynomials.(9)
Weil advanced a series of conjectures in number theory in which
the analogue, for finite fields, of the Riemann Hypothesis found
expression. The proof of Weil’s conjectures was the challenge that
Grothendieck took up through the development of sheaf cohomol-
ogy and through the introduction of the concept of a scheme as a
generalisation of the concept of an algebraic variety.

A scheme is, in fact, given together with its covering by affine
schemes. In a general topological sense, it is a space such that each
open U is associated with a commutative ring and the spectra of
these rings can be ’glued’ together. With reference to the affine case,
Ciro Ciliberto summarises the idea as follows: ”an affine scheme X
is, in short, assigned in the affine space An by giving its equations
i.e., by giving the ideal IX of the ring S of all polynomials in n vari-
ables (i.e., the regular functions on An) that have their zeros on
the scheme” and ”just as a variety is covered by openings that are
affine varieties that conveniently glue together, a scheme is covered
by affine schemes that glue together”, [5]. Exploiting the proper-
ties of the bundle of regular functions on a scheme X, defined as a
structural bundle of X, Grothendieck went on to consider no longer
a single sheaf but the entire category of sheaves on a space.(10)

The notion of a sheaf had been introduced by Jean Leray in some
papers from 1945-47 and then clarified in 1947 by Henri Cartan, to
whom we also owe the definition (in 1950) of espace étalé formed
by a given space X together with the collection of spaces that are
locally homeomorphic to X.(11) It is precisely by generalising this
notion that Grothendieck successfully tackles the challenge posed
by Weil’s conjecture. The generalisation is achieved by abstract-
ing certain characteristic properties of a generic topological space
X, without referring to the elements, ”points”, of X, but consid-
ering only the algebraic structure of the ”parts” of X, i.e., to the

(9)For a clear and comprehensive overview, see [7].
(10)A clear reconstruction of the path followed by Grothendieck to prove Weil’s

conjectures is offered in [29].
(11)For those unfamiliar with the notion of a bundle, the concrete examples

described in [42] may help.
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lattice O(X) of its opens (in effect, a complete Heyting algebra).
The underlying idea was that what matters of such a structure can
be expressed in terms of the coverings of each open U: instead
of limiting oneself to the partial order associated with the inclu-
sion (between opens), one could have recourse to the properties of
appropriate covering families of morphisms havingU as codomain
and study their transfer to any open of U.

Grothendieck realised that the notion of covering used to define
a sheaf on a topological space could be expressed in purely cate-
gorical terms and thus arrived at the notion of a site as a category
endowedwithwhat later came to be known as ’Grothendieck topol-
ogy’ and the notion of topos as a category of sheaves on a site.
Instead of O(X) as a poset category, one takes a more general cat-
egory and asks, firstly, how to transfer a structure defined on a
particular object, to another object, and secondly, in the case of
these objects being categories, one asks how to transfer, by means
of a functor, the given structure from one category to another. This
is how we arrive at a generalised notion of base change.

To define this notion, category theory was indispensable.
Indeed, in order to make a base change within a category C, the
category must first have pullback. Given a morphism f : A → B
in C, f induces a functor f ∗ : C/B → C/A that associates to any
g : X → B the morphism f ∗(g) = g′ : A ×B X → A obtained
via pullback of g along f. The functor f ∗ is contravariant (as is
the cohomology functor from topological spaces to abelian groups,
while the homotopy functor is covariant). The object X′ = A ×B X
is said to be obtained ’by change of base’ from B to A. In particular,
fixed B as a base and taking an element b ∈ B, the fibre of g on b is
x ×B {b} via the inclusion {b} ⊂ B.

Considering a category of sheaves of sets on C, a sheaf F is sim-
ilarly transported. The case of interest for algebraic geometry is
when B is a scheme and F is a sheaf of abelian groups. A ’base
change theorem’ then states what remains unchanged (up to iso-
morphism) by base change; the validity of the theorem obviously
depends on the properties of C.

A Grothendieck topos, as a category of sheaves on a (’small’)
site(12) has finite limits, so it is a category E with a terminal object,

(12)Aproper class is a collection sufficiently ”large” to be in one-to-one correspon-
dence withOrd, the class of all ordinals. A collection is ”small” if it is not a proper
class. If the use of the term ’set’ is made in opposition to ’proper class’, it suffices
to say that a class A is proper if there is no class B such that A ∈ B; if there is,
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equalizers and pullbacks, thus it has finite products too — the
Cartesian product A × B of two objects A and B being obtained via
pullbacks over the terminal. Furthermore, E is Cartesian closed,
so for each A and B in C, it has exponentials BA,(13) which behave
in the expected way, i.e., the exponential objects ’internalise’ the
functor Hom from Cop× C to Set, which maps each pair ⟨A, B⟩ of
objects of C (locally small) to the set of C-morphisms from A to
B and maps functions to morphisms in the obvious way, so that
Hom(A × B, C) ∼= Hom(C, BA). In the usual lexicon, BA is ’the
space of functions’ from A to B. The existence of such an object is
trivial in Set, whereas for other categories (e.g. when considering
a category of spaces) it is not. Finally, in a Grothendieck topos E
the duals of the limits listed above are also present, so E has initial
object, coequalizers and pushouts (and hence co-products).

Let us now consider the Sub functor: Cop → Set, which assigns
to each object B of C the set of its subobjects, where each subobject
is the equivalence class (up to isomorphism) of all ⟨A, B⟩ such that
m is a monomorphism A ↣ B. In general, it is not certain that an
object that internalises the Sub functor exists in C. It was Lawvere
who realised that in each Grothendieck topos E there is such an
object, i.e., E has a subobject classifier Ω: for each A ↣ B, there is one
and only one morphism χm : B → Ω : such that m is the pullback
of a special morphism t (’true’): 1 → Ω. At this point we define an
elementary topos as any Cartesian closed category with finite limits
which has a subjective classifier.

Every Grothendieck topos is an elementary topos, but not vice
versa. A necessary and sufficient condition for a category with
finite limits to be (equivalent to) a Grothendieck topos is estab-
lished by Giraud’s Theorem, which, when referring to a category
E that is an elementary topos, reduces to the following two require-
ments:

• E has all colimits indexed by sets (i.e. small colimits, and in
fact small arbitrary co-products suffice);

A is a set. In this way, small sets are simply sets, i.e. classes that are not proper.
For many aspects of category theory, it is sufficient to work with locally small cat-
egories, i.e., such that the collection HomC(A,B) of morphisms between any two
objects A and B of C is a set. In Grothendieck’s sense, small sets are those that are
elements of a Grothendieck universe U (a collection of sets transitive downwards
and closed with respect to pairs, power sets and arbitrary unions indexed in U).
(13)In general, given two objects A and B in a category C, the exponential, when

it exists, is the object BA which corresponds to the ’function space’ from A to B.
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• E has a (small) set of generators.(14)

Lawvere and Tierney pointed out that a Grothendieck topology
is logically expressible as a modal operator on Ω, i.e., as an endo-
morphism j : Ω → Ω, which expresses the idea of local truth and
is characterised by the following properties: j · true = true, j · j = j
and j · ∧ = ∧ · j × j.

In a category of sheaves, a morphism from the terminal, taken
as the base on which a sheaf may be defined, to any object F is a
global section of F. The global sections of Ω (the truth values) are
in one-to-one correspondence with the subobjects of the terminal,
via Cartesian closure: in fact, since Sub(B) ∼= Hom(B, Ω), we have
Sub(1) ∼= Hom(1, Ω) ∼= Ω1 ∼= Ω. In Set, Ω reduces to the Boolean
algebra 2 = {0, 1} where 0 stands for False and 1 for True, so there
are only two morphisms from the terminal to Ω. But this does not
apply to a topos of non-constant objects, i.e. having a base other
than a singleton.

The subobjects of 1 in an arbitrary topos turn out to form not a
Boolean algebra but a Heyting algebra, which from Ω is transferred
to Sub(B), for each object B in the topos. The corresponding logic
is intuitionistic (higher-order), now expressed in semi-equational
form (because the composition of morphisms is not everywhere
defined). In a topos of sheaves on a base spaceX, the terminal is the
identity sheaf on the base space, so Sub(1) can simply be thought
of asO(X).Classical logic is re-obtained as a special case: for exam-
ple, ifX is discrete, O(X) is a Boolean algebra and the intrinsic logic
of the topos then becomes classical logic, thus with the principle of
excluded middle.

Within this framework, it is possible to refine the notion of
truth. Tarski had specified this notion in set-theoretic terms, thus
within Set. Likewise, for a language that can be interpreted in
any other elementary topos, the notion of truth admits a formal
semantics, but now the semantics is functorial, thus it is more con-
strained and at the same time more general than that expressed in
set-theoretic terms. André Joyal’s contribution to the clarification
of sheaf semantics and, more generally (when the gluing condi-
tion is removed) presheaf semantics is referred to as ’Kripke-Joyal
semantics’.

(14)The conditions provided byGiraud’s Theorem are independent of the specific
properties of the base site, if any, and indeed there may be sites C and C’ that are
not equivalent (as categories) but are such that Sh(C) is equivalent to Sh(C’).
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14 A. Peruzzi M×Φ

The clarification of such semantics has been a fundamental
achievement for both mathematics and philosophy: as it was
acknowledged that Tarskian semantics and relational, or ‘possible
worlds’, semantics (due to Kripke et al.), are indispensable tools for
analysing the link between truth andmeaning, a similar acknowledg-
ment is required for categorical semantics, developed to interpret
theories (first-order or higher) and investigate the class of models
no longer limited to those in Set.

§ 4. — From algebraic geometry to logic.

While the importance of Grothendieck’s achievements in alge-
braic geometry was immediately recognised, the importance of the
change in language and method that loomed for logic and set the-
ory with the use of notions from category theory took longer to be
recognised, because of the difficulty to identify the foundational
scope of the concepts developed in algebraic geometry, and the
very idea that they could have philosophical relevance was even
more difficult to accept.

The path from algebraic geometry to a core of categorical notions
and methods as the nucleus of a new ’grammar’ of mathematical
language in its entirety has not been the easiest. The idea that
certain categorical constructions put to use in a particular sphere
such as algebraic geometry had significance for long-debated issues
in the philosophy of mathematics met with sceptical, if not hos-
tile, reactions, and attempts were made to absorb the results
through appropriate ’translations’ that safeguard the set-theoretic
paradigm.

The abstraction required by the immersion of the ’nut’ in an envi-
ronment (category) of variable objects on a given base, and then by
the variability of this same base, was not merely aimed at greater
generality but oriented towards conceptual mathematics. It was this
abstraction that led Grothendieck to the results that earned him
the Fields medal in 1966 and allowed one of his students, Pierre
Deligne, to prove Weil’s Conjectures.

Grothendieck’s use of categorical languagewentwell beyond the
horizon that hadmotivated the formulation, in 1945, of the concept
of category by Saunders Mac Lane and Samuel Eilenberg, which
was not due to a generic trend towards abstraction, but rather to
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the need to give a uniform structure to the concept of ‘natural trans-
formation’, relative to the correspondence, which today we call
‘functorial’, between topological spaces and homotopy and homol-
ogy groups. With hindsight, the definition of a category seems a
truism, and not even Mac Lane and Eilenberg expected that their
toolbox would serve to solve problems of algebraic geometry, let
alone formulate a theory capable of standing as a candidate for the
foundation of mathematics.

There were those who understood category theory as a lingua
franca and those who spoke of it (ironically) as an abstract non-
sense. But a language is not enough to prove theorems by means
of which one then solves problems that are anything but trivial,
and an abstract nonsense does not produce the specific use that
Grothendieckmade, in algebraic geometry, of categories of sheaves,
and more specifically sheaves of rings and sheaves of groups on a
space X, and then on a site C. Such a category is referred to as a
’Grothendieck topos’.(15)

It was Lawvere who realised the foundational potential of the
conceptual framework developed by Grothendieck, after having
shown in his 1963 doctoral thesis how, in purely categorical terms,
the concept of algebraic theory could be made independent of lin-
guistic presentation, thus providing new foundations for universal
algebra. The following year, Lawvere axiomatised set theory with-
out making use of ∈. It only remained to deal categorically with
logic in order to shape the new approach to foundations. For the
propositional calculus, as well as for the lambda-calculus, a carte-
sian closed category would suffice, as Lawvere showed. But how to
express quantification algebraically? There were already cylindric
algebras and monadic and polyadic algebras, but apart from mov-
ing in the Boolean domain (only suitable for classical logic), the
techniques developed were far from providing a manageable tool
capable of expressing the comprehension principle as well.

As already mentioned, Lawvere realised that in every
Grothendieck topos there is a special object: a subobject classi-
fier, Ω, so that Grothendieck himself referred to it as a ’Lawvere
object’.(16) Finally, in 1970, Lawvere and Miles Tierney succeeded
in extracting a set of properties of a Grothendieck topos and used

(15)In what follows, we will use ’topoi’ as the plural of ’topos’ in Greek, rather
than ‘toposes’, though Grothendieck intended the term ‘topos’ just as an acronym
for ‘TOPOlogical Space’, to refer to a generalised space.
(16)The definition of this concept is provided in § 4.
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these properties to introduce the notion of elementary topos (the
definition of which later turned out to be reducible to that of a
category with finite limits that is Cartesian closed and possesses
a subobject classifier).

Compared to Mac Lane’s original framework, the turning point,
essential for both Grothendieck’s and Lawvere’s work, was the
concept of adjunction between functors,(17) introduced by Daniel
Kan. (For what concerns the origin of Kan’s discovery, Jean-
Pierre Marquis informed me that Kan, after attending a seminar by
Eilenberg, realised that the special symmetry manifested through
the relationship defined by Eilenberg between the tensor prod-
uct and the hom-functor for two proper categories could lead
to a more general notion). Grothendieck immediately grasped
the importance of the concept and arrived at the formalism of
the ”six operations” with reference to a morphism f : X → Y
of schemes. Such a morphism induces precisely three pairs of
adjuncts between the categories of (abelian) sheaves Sh(X) and
Sh(Y): ⟨ f ∗, f∗, f!, f !,⊗,Hom⟩, where f ∗ is the inverse image func-
tor, f∗ the direct image, f! and f ! respectively the direct and the
inverse image with proper support, and ⊗ is the tensor product as
left adjunct of the inner Hom functor.(18)

In order to arrive at a categorical treatment of quantification, it
was decisive that in a category C with pullback (fibred products),
the contravariant functor f ∗ : C/Y → C/X associated with a mor-
phism f : X → Y possesses both a left and a right adjoint. Moving
fromalgebraic geometry to logic, the functor f ∗ in fact expresses the
substitution of a term y defined onY by a term x defined onX along f ,
determined precisely by f (x) = y. While the ordinary treatment
of substitution found in logic textbooks omits f, its non-omission
(facilitated by using variables of more than one sort) allows for a
finer analysis, which fills a gap in previous attempts to extend alge-
braic logic from the monadic case to the polyadic (relational) case.

But what are the left and right adjoints of f ∗? To fix ideas,
it is best to restrict ourselves to the more familiar case, where X
and Y are two sets and f is a function from X to Y. The functor
(17)Given a functor F from category C to category D, and a functor G from D to
C, F is said to be left adjunct of G, and G right adjunct of F, if there exists a natural
isomorphism betweenHomD(FA, B) andHomC(A, GB), for each objectA inC and
B in D, where an isomorphism is said to be ”natural” if it is stable with respect
to any morphism A′ → A and B → B′. When this condition is satisfied, F ⊣ G
written. Galois connections are a particular example of adjunction.
(18)For a more general formulation, see [23].
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Sub associates to any given set the set of its subsets and, given
a function f : X → Y, behaves as its counter-image map, so
Sub has as its domain the poset(19) of the subsets of Y and as
its codomain the poset of the subsets of X. Usually we denote
Sub(X) as the power set P(X), which in the category of sets, Set,
can be represented by 2X. In this same category every function
f : X → Y induces a functor P f : PX → PY s.t., if A ⊆ X
and B ⊆ Y then ∃ f (A) ⊆ B if and only if A ⊆ f−1(B) where
∃ f (A) = Im( f ) = {y ∈ Y|∃x ∈ A( f x = y)}; thus ∃ f ⊣ f−1.
But f−1 also has a right-hand adjoint, denoted ∀ f , because, given
that ∀ f (A) = {y ∈ Y|∃x ∈ X( f x = y ⇒ x ∈ A)}, it is true that
f−1(B) ⊆ A if and only if B ⊂ ∀ f (A); thus f−1 ⊣ ∀ f . Generalising,
the two adjoints of f ∗ correspond to ∃ f and ∀ f respectively, also
in other suitable categories. If X and Y are spaces and f a continu-
ous function from X to Y, Sub maps them to the collection of their
respective opens, which does not give rise to a discrete topology, as
P f would, and then, in a category of sheaves on a space, Ω does
not necessarily have the structure of a Boolean algebra but that of
a Heyting algebra, so the logical environment is no longer the clas-
sical but the intuitionistic one.

As far as logical connectives are concerned, let P be a category
whose objects are propositions and whose morphisms are deduc-
tions, 1 be the terminal category having only one object, denoted by
{∗}, and, as the only endomorphism, obviously the identity, while
∆ is the diagonal functor on P, which maps each proposition β to
the pair ⟨β, β⟩. The product functor−×−, from P× P to P, is right
adjoint to ∆ and induces the binary product with the properties
of conjunction, while the coproduct (sum) functor − + − as left
adjoint to ∆ lets P have coproducts, the properties of which cor-
respond to those of disjunction. The two morphisms, ⊥ and ⊤,
defined as the left and right adjoints to the unique functor ! from P
to 1 represent False (absurd) and True (⊤ for True) respectively.

Finally, the right (exponential) adjoint to the product, with a
fixed factor, gives rise to the implication ⇒, by which the exponen-
tial (−)β is ’internalised’ (i.e. represented internally). The negation
¬β is a special case of this: β ⇒ ⊥. If we make the further assump-
tion that by symmetry the functor − + β has a left adjunct, a new

(19)In the specific case where the objects are sets, Sub (-) gives rise to a comple-
mentary distributive lattice, endowed with a minimum and a maximum, so it is a
Boolean algebra, whereas such is not the lattice of the opens of an arbitrary space.
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connective \, of ‘logical subtraction’, with properties different from
negation, can be identified.

Intuitionistic propositional logic can then be expressed in a sin-
gle diagram of adjunctions between functors, to which is added
a second diagram of adjunctions that expresses the properties of
quantifiers and is nothing more than a direct generalisation of
∃ f ⊣ f−1 ⊣ ∀ f described above for sets, [32] and [36]. However,
not everything that is expressible in a first-order (or higher-order)
language is preserved along functors that have geometric meaning:
it was therefore necessary to identify the subclass of formulae that
are thus preserved.(20)

This concise description of how logical notions are presented in
the categorical approach gives insight into the radical change in per-
spective that takes shape with Lawvere. The idea that one could
categorically set up the Grundlagenforschung also entailed a change
in philosophical perspective, similar to the change that took place
when Galileo understood the state of rest of a body no longer as
a qualitative state opposite to that of motion, but as a motion with
zero velocity. The comparison is not accidental, because Set, the
category (topos) of sets and functions between sets, is equivalent
to the category of the sheaves of sets that vary on a point-like base
space, i.e. to Sh(X) with X = {∗}, on which the variation is zero.
IdX is obviously the terminal of this category, and Sub(∗) gives rise
to classical logic. More generally, if X is the base space the struc-
ture of Sub(X) is sufficient to determine the logic of a topos, at
least as far as properties of a local character are concerned. Along
the same path of modern science in mapping qualities to quanti-
ties that can bemeasured, also the difference, generally understood
as qualitative, between extensional and intentional semantics takes
a range of forms, dependent on the existence of a generator (or
generating family) that may be quite different from the terminal.
Consequently, it is possible to ”measure” how much the procedu-
ral character of functions differs from their set-theoretic meaning
as sets of n-ples, [34] for n ⩾ 1.

It was the setting of concepts and theories in a topos of sheaves
that made it possible to successfully tackle intractable problems
while remaining within the topos of constant sets, or in a topos of
presheaves of variable sets on a set. To give just a couple of exam-
ples:
(20)After Lawvere’s pioneering research, Gonzalo Reyes provided some of the

main contributions on this issue, see [27].
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• From 1967 onwards, Lawvere and Anders Kock gave shape to
synthetic-differential geometry by setting it in a smooth topos,
as a category whose objects are generalised smooth spaces
(with smooth functions as morphisms) between which there
is an object D that acts as an ’infinitesimal space’ and all mor-
phisms from D to R are linear; which is only possible in a
non-Boolean context, [32].

• In 1982 Martin Hyland introduced Eff, the effective topos, as
an appropriate category for realisability in Kleene’s sense,
because in Eff every total function from N to N is recursive,
but again Eff is not Boolean, [19].

Although it must be acknowledged that from 1970 onwards the
categorical approach to foundations developed independently of
research in algebraic geometry, many concepts used in categorical
logic(21) were derived ’by distillation’ from their use in algebraic
geometry. Among these concepts, some are to be considered key
concepts:

1. the construction of sheaves of variable structures on a base
space and the role assigned to ’local character’ properties;

2. invariance by base change with respect to appropriate func-
tors;

3. the notion of a variable, generalised element of an object X, as a
morphism of codomain X, and the logical notion of a constant
as a point (global section) of X;

4. adjunctions between functors as connective tissue between
categories of different species (such as spaces, groups, sets)
and the related process of internalisation (as described by
Grothendieck in [14]) ;

5. the concept of a generic model of a (’geometric’) theory.

Points (1) and (3) made it possible to elaborate a theory of con-
tinuously variable sets on a base space and then, by considering
presheaves, a theory of variable sets in general on a category. Point
(2) emphasised geometric morphisms between topoi, i.e. those pairs

(21)For an accurate reconstruction of the genesis of categorical logic, with partic-
ular reference to geometric logic, see [27].
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of adjuncts between two topoi, when the left adjoint preserves lim-
its (is ‘left exact’). Point (4) prefigured the intrinsic link between
logic and algebra, established through the existence of an object Ω.
Point (5), within the framework of the functorial semantics intro-
duced by Lawvere, contributed to the discovery of geometric logic,
directly connected to point (2).

It is through these key-concepts that, in response to Enriques’
initial question (*), the philosophical meaning of algebraic geometry
takes shape, in a sense that differs from the ways in which the link
between geometry and philosophy, and more generally between
mathematics and philosophy, has been configured in the past (as
will be seen in the next section). Logic and geometry are, in fact,
no longer separable, once inferential principles are determined by
the category in which they are ’internalised’. Whereas Brouwer’s
appeal to the intuition of time was associated with the demand for
constructive proofs, which led to intuitionistic logic, now that logic
is a direct consequence of the algebraic structure of Ω in a gener-
alised space, of which temporal order is only one example; and
whereas Brouwer’s view was opposed to formalism, according to
which proofs are reduced to manipulations, governed by logic, of
meaningless symbols, now logical operations can be seen as projec-
tions, to ’syntactic’ objects, of operations on objects of a universe
U endowed with topological and geometrical properties, and this
projection in turn feeds spatial intuition (in a manner analogous to
how, after associating an affine variety with its ring of co-ordinates
one passes to any ring and realises that it can be represented as a
ring of functions on a scheme).

§ 5. — Remarks on the historical development of the
relationships between geometry and philosophy.

The special nature of the entities referred to in mathematics and
the special status of geometric knowledge have been the subject of
philosophical reflection since antiquity. Concepts, principles and
methods of mathematics have acquired philosophical significance
for various reasons: first for the paradigmatic value attributed to
mathematical entities, as in the case of the Pythagoreans’ arithmo-
geometry, and for the idea that mathematical rigour is the model
of rationality; then for the indispensability of mathematics in the
formulation of physical laws, as well as for the impact of certain
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mathematical results on classical philosophical questions, such as
those concerning infinity, and finally for the philosophical interpre-
tation of meta-mathematical theorems, such as the Incompleteness
Theorem (Gödel) and the Theorem of Indefinibility of Truth
(Tarski) when the expressive resources of language allow for self-
reference.

Mathematics, and in particular geometry, was even understood
as a prerequisite for doing philosophy, so much so that, appar-
ently, the inscription Aγεωμέτρητος μηδεὶς εἰσίτω, ‘Do not enter if
you do not know geometry’, stood out on the portal of the Platonic
Academy. Today, a freshman philosophy student who, upon enter-
ing the building in which classes are held, would find such an
inscription at the entrance, would be inclined to assume that he
or she had got the wrong house number or would begin to doubt
whether he or she had made the right choice. A mirror scenario for
maths freshmen would have a similar effect.

To be generous, it is said to be just a practical necessity, resulting
from the division of intellectual labour and increasing specialisa-
tion. If this had always been the case, however, today’s science
would not exist. To be less generous, it is said that mathematics
is now one thing and philosophy another: a truism, but this may be
misleading because it leads one to forget that ’disciplinary fields’
do not come into the world with their boundaries written on their
foreheads: the concepts and methods that distinguish them are the
product of a long selection, and this selection, which at no point can
be considered complete, is enriched as new connections are estab-
lished between two areas of research.

Instrument (Ὄργανον) of knowledge: this is how the
Aristotelians understood the theory of syllogisms, which today
is only a (decidable) part of (classical) first-order logic. At the
entrance to the Lyceum, however, Aristotle did not have an inscrip-
tion similar to that of the Academy: ’Let no one enter who does not
know logic’. In reality, just as the Academy was a place of train-
ing for many mathematicians (such as Eudoxus), so the Lyceum
was a place of training for those who wanted to learn a method to
ascertain the correctness of reasoning in any field of knowledge...
assuming that every argument were reducible to syllogistic form,
which geometry itself disproved (e.g., the transitive property of
the identity relation does not correspond to a syllogism).

Logic was a philosopher’s affair and did not require expertise
in geometry and, more generally, mathematics was not considered
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by Aristotle to be essential to natural philosophy — which included
what we now call ’physics’. The Aristotelian model of knowledge
was taxonomic, and the characterisation of each individual entity
was arrived at bymeans of a qualitative classification, the purpose of
which was the actual (essential) definition of each node of the tree
of genera and species, with the exception of the maximal genera
and the lowest species.

Although the taxonomic ideal did not disappear, not even in
mathematics — just think of the classification of surfaces, and the
classification of simple groups — first the ’forgotten revolution’
in the Alexandrian age, [41] and then the scientific revolution
of the 17th century sanctioned a break with the Aristotelian
approach even from a logical-linguistic point of view, passing from
a qualitative to a quantitative discourse and from propositions
of subject-predicate form to propositions that expressed relations
between the increase/decrease of one quantity and the increase/de-
crease of another in a given time interval, and above all, at least as
far as physics was concerned, the form of ’laws’ became equational.

If in such a form we recognise a guiding idea of the scientific
image of the world, we should be surprised that the principles of
mathematics do not have the same form. On the contrary, many
still take it for granted that the logical principles and those of set
theory, on which all mathematics should be based, are not equa-
tions. Thanks to Lawvere, — and of course not only to him, — the
extraction of logical principles from the very structure of a topos
paved the way for removing this residue of the pre-Galilean view.

As everyone knows, equations require the symbol ’=’ to indi-
cate equality. Equality is a very special relation because it is the
finest equivalence that is also the most general congruence, i.e., that
satisfies the substitutivity principle with respect to an algebra of
properties (and operations). As a rule, in fact, the symbol ’=’ is
used with reference to a given domain and a fixed set of assump-
tions. To give an example pertinent to algebraic geometry, the
polynomial equation with integer coefficients x2 + y2 − 3 = 0 has
no integer solutions, but if we go to the finite field of integers mod-
ulo 5, it has instead solution: 32 + 32 − 3 = 15 (congruent to 0,
precisely modulo 5).

In mathematical practice, equivalence relations are often used
in view of the quotient structures associated with them. From a
foundational perspective, they are required to reconstruct number
systems bymeans of a chain of definitions by abstraction (of C from
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R, of R from Q, of Q from Z and of Z from N), so the principles
that legitimise definitions by abstractionmust be specified and this,
in turn, requires the logical principles of reasoning using quanti-
fiers and arbitrary relations to be made explicit. Both objectives
were achieved in the late 19th century, after the arithmetisation
(Dedekind, Cantor) of the Calculus, as the final step in the process
of making mathematics the realm of rigour that it is expected to be.

In fact, in the same years in which Cantor laid the foundations of
set theory, Frege laid the foundations of the new logic, in a language
in which alternating sequences of quantifiers (for every x there is a
y such that for every z ...) could finally be handled in the presence of
n-ary relations, arriving at the definition of the cardinality of a set
M as the equivalence class of all M′ such that there exists a bijec-
tion between M and M′.(22) This bridged the gap between logic
and mathematics that had lasted for more than twenty centuries,
and which Boole had only minimally bridged by making the alge-
braic treatment of syllogistics possible. The logic needed to express
mathematical reasoning also had an axiomatic form, just like geom-
etry, but this form was not equational.

As for the axiomatic method as a model of rationality, if the
Euclidean Elements have been understood, for two millennia, as
something more than a treatise on geometry, it is because they
exemplified this model, as the title of Spinoza’s most famous work:
Ethica more geometrico demonstrata testifies. The concept of proof,
however, had remained implicit: used and exemplified, rather than
made the subject of mathematical investigation. The clarification of
its characters did not seem indispensable, even though the problem
of the independence of the fifth Euclidean postulate from the other
four could already signal its necessity. It was thanks to Hilbert
and his school that the axiomatic method reached an extraordinary
level of rigour, leading to Proof Theory, in which the very structure
of proofs is studied.

And strictly speaking, axiomatisation typically has two faces:
one side is turned towards expansion, because it induces one to
explore the variants of the concepts usually employed as well as
their possible generalisations—and in this respect the abstract alge-
braic approach proved to be a decisive example; the other side is
turned towards the foundation, the paradigmatic example of which
was the ’reductionist’ perspective (from C to N) developed during
(22)In categorical language, the corresponding quotient, like any other, is

obtained as a co-equaliser.
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the 19th century, which, however, stopped at arithmetic and arith-
metic still lacked an axiomatisation. Where Kant was still of the
opinion that arithmetic was only a set of intuitive rules of computa-
tion, Dedekind and Peano set themselves the task of axiomatising
arithmetic and succeeded in doing so almost simultaneously. Then,
within the Cantorian framework, the general notion of number (as
cardinal, finite or infinite) was definable by abstraction.

At that point, the project of rigourisation could focus on the
principles of set theory using the new logic, in order to provide a
secure foundation for all mathematics. Since then, the philosophy
of mathematics has experienced great growth, even if the attention
philosophers have paid to mathematics has been directed, almost
exclusively, not so much to the architecture of mathematics as to
issues internal to the scenario opened up by the systems of Frege,
Russell and Zermelo: How to avoid paradoxes? What infinitary
commitment to accept? What meta-mathematical resources to rely
on? What justification to give of ’challenging’ axioms, such as the
axiom of choice (in one of its many variants)? What lesson to draw
from the limits encountered (Gödel) by Hilbert’s Program? What
rearrangement of the fundamentals is achievable by adhering to
the demands of constructivity (which, at the very least, exclude
recourse to proofs by contradiction)?

Faced with this scenario, when Enriques’ words quoted at the
beginning were written (1921), they had a retro flavour. Logicism,
that is, the thesis of the reducibility of mathematics to logic, was
not supported, norwas intuitionism, because the intuition towhich
Enriques referred was geometric. Cantor’s ’paradise’ extended far
beyond the scope of such intuition and, above all, the ’experimen-
tal’ approach of the Italian algebraic geometers did not align with
the metatheoretical scruples of Hilbertian formalism. And when
Enriques died (1946) the ’abstract’ approach to algebraic geometry
was beginning to take shape with the French school, in an environ-
ment close to Bourbaki’s structuralism.

Bourbaki set aside the philosophical commitment required
by logicism, formalism and intuitionism and instead used the
axiomatic route indicated by Zermelo. In fact, if we overlook the
tension between descriptive intent, which led Bourbaki to recognise
three fundamental types of ’structuresmères’, i.e. ‘mother structures’
(algebraic, order and topological), and normative intent (inherent
in distinguishing ’good’ compound structures from ’bad’ ones),
a specific version of set theory, comparable to ZF plus the axiom
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of choice, but without the axiom of foundation, [3] remained as
the common basis of the treatises of the Éléments de mathématique
(begun in 1939)(23)

Bourbaki wanted to give voice to the working mathematician
alluded to in the title of a famous article of his from 1949, [2] in
a spirit that was later well expressed by Jean Dieudonné when,
with evident irony, he observed that mathematicians have more
to think about than asking ’philosophical’ questions: at best, they
think about it on Sundays, in order to return on Mondays to their
interrupted work. Hence, there was no need to fiddle with logical-
linguistic scruples, to worry about the ’size’ of the sets referred to
when handling function spaces, or to adhere to constructiveness
constraints.

The great advances made in algebraic geometry after the Second
WorldWar culminated in the treatiseÉléments de géométrie algébrique
(1960-1967), written by Grothendieck and Dieudonné. What made
this progress possible was an increase in abstraction, independent
of a foundational project, as well as a specific philosophy of math-
ematics and logical requirements. In contrast, the main form of
’scientific philosophy’ that had taken shape in theViennaCircle had
made logicism an essential component of a program that under-
stood philosophy as the activity of clarifying language, be it ordinary
language or the formalised language of a scientific theory, and
this clarification was to get philosophical problems out of the way,
reducing them to errors of ’grammar’, leaving the remaining prob-
lems to science.

It was a ‘therapeutic’ and at the same time ‘prophylactic’ task:
conceptual hygiene passed through logical analysis and, since
mathematics was reduced to logic, there was no need to concern
oneself with questions pertaining to specific areas of mathematics,
because it was sufficient to stick to the logical syntax of mathe-
matical language and ‘formal” semantics, in set-theoretic terms, as
introduced in 1935 by Alfred Tarski (1933), later enriched in the
form of ’possible words semantics’. In essence, the activity of clar-
ifying the meaning of each proposition was confined to the use of
entities inSet, while in algebraic geometry the key-concepts (1)-(5),
listed in § 4, were developed, which go far beyond this category and,

(23)For details on this, see [24] and [28]. Themain alternative to ZFwas the NBG
system, formulated by J. Von Neumann, P. Bernays and K. Gödel, which admits
proper classes and adopts a peculiar version of the comprehension principle.
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put to use by Lawvere, allow a finer, and mathematically meaning-
ful, analysis of the syntax and semantics of a formal language.(24)
Not only: when the semantics is referred to a category of vari-
able structures and, in particular, of variable sets, one regains (as
already anticipated) the ‘possibleworlds semantics’ formodal logic
and intuitionistic logic, since such semantics basically has to do
with a topos of presheaves of sets that vary on a simple poset (and
if the poset has only one element, one obtains Tarskian semantics).
Here again the two sides, foundational and expansive, of abstraction
find joint manifestation.

In the same years Enriques was advocating a scientific philoso-
phy unrelated to the need of logical rigour, that the only (reliable)
philosophy is that which begins with the analysis of language was
an idea made possible by the emergence of mathematical logic,
whose use in such analysis was not, however, mediated by the topo-
logical, geometric, algebraic structure of the universe-of-discourse.
The resulting confinement to set-theoretic semantics has favoured
the flowering of a new scholasticism. The enormous gap between
the ’purely’ logical plane and the specific structure of each spe-
cific universe-of-discourse ended up being filled with exercises in
pre-Galilean ontology, which have nothing to do with the mathe-
matical language of modern science. On the one hand, philosophy
was vowing itself to a metalinguistic exile, on the other hand, the
exile was prevented by an object-language capable of self-reference.
Now, in the name of rigour, bridges were cut with intuition, and
now, in order to recover intuition, rigour was set aside. In short,
if philosophy is reduced to an activity of clarifying language, it
provides no knowledge at all; otherwise, it returns to host, at best,
a metaphysics, ’analytically’ moulded, which, however, lacking a
linkwithmathematics as the organon of the explanation of the phys-
ical world, takes us back to a qualitative vision, setting aside any
relationship between quality and quantity.(25)

Meanwhile, if the universe of sets led some to attribute to it a
reality parallel to physical reality, the spread of the formalist atti-
tude led others to think of mathematics as nothing more than a

(24)And later also of a natural language: see, in this regard, some of the contribu-
tions collected in [26].
(25)As if the link between the shape of a common doughnut and the Z ×Z group

had nothing to do with the concept of path, which has its root in the common
experience of space, whereas the intuition behind such a concept is ‘lifted’ to the
concept of proof.
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collection of symbol manipulation games.(26) The neo-positivists
had got around the alternative: since mathematics is reducible to
logic via appropriate definitions, mathematical truths are such in
virtue of the meaning of the terms alone, hence they are ’analytic’
truths and, as such, inherent exclusively to language, and since the
choice of one language over another is conventional, mathemati-
cal assertions have no content until they receive it from their use
in the empirical sciences. Behind this idea was Poincaré’s solution
to the question that emerged with the discovery of non-Euclidean
geometries: Which geometry is true? Poincaré argued that the ques-
tion was ill posed: one should rather ask what metric convention
to adopt and, as with any other convention, the choice being free, it
is only a matter of assessing which one is more effective, [39].(27)

But even independently of logicism, one could avoid any refer-
ence to intuition by understanding the axioms of a mathematical
theory as implicit definitions of primitive notions; consequently,
the (formal) meaning of geometrical notions was univocally fixed
by the network of inferential links within an axiomatic system.
This idea, put forward by Poincaré, in polemic with Russell, even
before Hilbert, is still widespread today, despite the fact that for
any first-order theory that has an infinite model, that model can-
not be unique (up to isomorphism). But even setting aside logical
questions concerning the idea of a system of axioms as an implicit
definition, such an epistemological framework fails to account for
the progress made in the twentieth century by the mathematical
investigation of the concept of space, and prevents one from grasp-
ing the philosophical relevance of its many aspects. It suffices here
to recall four points:

I. the paradigmatic character of the method of local maps and
their gluing, as elaborated in differential geometry;(28)

(26)One can, therefore, well understand that the effectiveness of mathematics in
the natural sciences should appear ’unreasonable’,[45].
(27)Within the neo-positivistic framework, this way of understanding geometry

expanded into a general conventionalism, not only concerning the adoption of
one axiomatic system of geometry rather than another, but also the adoption of
the principles of any physical theory. In doing so, the neo-positivists set aside
Poincaré’s own recognition of the role of intuition in mathematics. Poincaré, in
fact, regarded both the axioms defining a group and arithmetic induction as non-
analytic but synthetic a priori principles.
(28)Contrary to the neo-positivist lesson, the philosophical scope of this method

cannot be confined — as it was not confined in Hermann Weyl’s monograph
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II. the presence of topological concepts in every area of mathe-
matics;

III. the change in perspective due to ’abstract algebra’, which
found systematic formulation in Bartel van der Waerden’s
Moderne Algebra (1930-31);

IV. and of course the specific advances in the study of spaces the
points of which are roots of polynomial equations, as in alge-
braic geometry.

It is rare to find a trace of these points in the philosophy of 20th
century mathematics, almost exclusively focused on logic and set
theory, as well as in the philosophy of science. Which is curious, to
say the least, because

I∗. Riemann had been a student of a philosopher such as Herbart,
heir to Kant’s chair at Königsberg, and it was from Herbart
that he took his cue to focus on the notion of extended mani-
fold (Mannigfaltigkeit);

II∗. analysis situs, from Poincaré onwards, has a direct impact on
Kant’s statements concerning space that did not refer to metrics;

III∗. the group concept is ubiquitous in mathematics, as it is in
physics;

IV∗. the definability of the entities referred to is a classical theme in
philosophy, so when the identification of something is a func-
tion of the complexity of its definition, algebraic equations
should have been the starting point.

In the philosophy of language, the expressibility of a principle
in equational form did not carry the weight it deserved, and when,
in the philosophy of science, it came to be hypothesised that log-
ical principles could depend on physical-geometric structure,(29)
the lesson was that of empiricism, opposed to the Riemannian idea
of an intrinsic characterisation of the properties of a structure: the
analogous possibility of deriving logical properties from within a
on Riemann surfaces (1913) — to Einstein’s later use of it in general relativity,
understanding space-time as a Riemannian manifold. For an example, relevant to
Willard v. O. Quine’s criticism of the two ’dogmas’ of empiricism, see [35].
(29)Themain impetus for this came from quantummechanics. Whereas the set of

events of a classical system can be described as a Boolean algebra, the set of events
of a quantum system is not a distributive but an orthomodular lattice.
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sufficiently structure-richUwas excluded by the conventional char-
acter of the choice of a system of logic. Instead, this possibility
took shape, thanks to Lawvere, in a fruitful manner and was artic-
ulated with the development of the five key concepts that emerged
in algebraic geometry, as mentioned in § 4. The idea of a conceptual
mathematics has thus found expression in the centrality assigned to
the adjunction between functors, in such away thatwhat has founda-
tional value is that which is transversal to the areas of mathematics,
[20] and so attention cannot but shift to the universal constructions
that allow the areas— and, with them, the multiple sources of intu-
ition — to be connected.

§ 6. — What is meant by ‘philosophical significance’?

The ’philosophical significance’ of ideas developed in anyfield of
knowledge is a terribly vague expression, which risks condemning
its analysis to superficiality. To reduce the vagueness and risk, it
is necessary to refer to specific concepts, methods and principles
that have found expression in a given field, to analyse the way in
which they have been specified, and to focus on the change they
have undergone in the course of the development of research in
that field. By examining, for the sake of brevity, only the change,
it should be considered that its philosophical significance may be
(A) explicit or implicit and (B) direct or indirect.
With reference to algebraic geometry:

(#) As mentioned in the previous sections, the philosophical
significance of the change has, for a long time, remained implicit,
because, even restricting it to the key-concepts (1)-(5), behind them
there was no intent similar to that of Leibniz, when he placed the
concepts of the Calculus within the project of a characteristica uni-
versalis of combinatorial nature, or similar to that of Frege, when he
developed an ideography (Begriffsschrift) in view of a logical foun-
dation of mathematics; on the other hand, neither the Hilbertian
school’s demand for rigour nor the need for increasing abstraction
would have been sufficient to identify the key concepts. It was only
with Lawvere that the general scope of the key concepts was made
explicit.

(##) While an indirect philosophical significance can easily be
traced in any relevant advancement of mathematical knowledge,
thus also in the development of algebraic geometry, its specific,
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direct meaning is not found in Enriques’ observations on mathe-
matics, nor in those of Grothendieck: for example, the method
metaphorically expressed by the immersion of the walnut in water
and the rising sea lent itself rather to being placed in the framework
of structuralism, but an elaboration in this sense did not take place.

The elucidation of an implicit and indirect philosophical sig-
nificance takes time. This might suggest the Hegelian idea of
philosophy as a nightingale that takes flight at dusk, i.e., after the
fact, were it not that in the present case such an idea would be
erroneous, because philosophical motives are not absent from the
path of mathematical research: in particular, the very project of a
conceptual mathematics called into question the assumption that the
only channel of interaction between mathematics and philosophy
is through the essentially meta-mathematical questions about first
principles, primitive notions, methods of proof and types of defini-
tion. This assumption supports the idea expressed by Dieudonné
that the everyday work of mathematicians does not require any
philosophical engagement, this engagement remaining confined to
frame questions, such as: what is space? What is a number? What
distinguishes mathematical knowledge from other types of knowl-
edge? Whatmeaning is to be given tomathematical truth? And the
answers to such questions do not belong to mathematics and have
minimal if any repercussions within it.

Such an idea seems to ignore the fact that in the 20th century
these questions were addressed by mathematical methods. In the
case of algebraic geometry, its philosophical significance emerged
through a deepening of the concepts used in mathematical prac-
tice, aimed at solving specific problems unrelated to foundational
questions. Decisive in this solution was the use of new concepts
that placed the architecture of mathematics at the centre, but in
a sense not imagined by Bourbaki. Rather, these concepts freed
Bourbaki’s conception of structures mères from a pyramidal residue
(with the apex of the pyramid in set theory) andmade architecture
properly modular, at the same time making explicit the system-
atic interweaving of categories of different kinds, each anchored
in basic experiences that nourish intuition.(30) It is in this second
perspective that, through category theory, the implicit and indirect
philosophical significance of algebraic geometry has become, with

(30)Mac Lane himself arrived, in [25], at such an idea, which, rather than opening
up to a more refined (categorical) structuralism, can be understood as a ’genetic’
phenomenology of mathematics, [38].
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Lawvere, direct and explicit: the key-concepts refer, in fact, to con-
structions that are transversal to the areas of mathematics and find
expression in pairs of adjoint functors, [19].

In 1971, Mac Lane also stated: ’Adjoints are everywhere’. For
Lawvere their ubiquity did not lead to a version, revised and
corrected in categorical terms, of structuralism, but rather to the
recovery of dialectical materialism. Lawvere’s endeavour in this
regard seemed vague to many mathematicians and, because it
by-passed the current debate in the philosophy ofmathematics, pre-
vented philosophers from understanding the revolutionary scope
of the new conceptual framework for a long time. In fact, what
was missing was an epistemological step, namely, the recognition
that the aforementioned transversality is still described by means
of the kinaesthetic patterns that shape the ordinary experience of
the world, which is, fundamentally, the experience of the curves of
moving bodies and their interacting surfaces, so that the battery of
patterns that forms the ’base space’ of cognition is lifted to the mul-
tiple planes of mathematical abstraction (including logic).

Such a change in perspective has important repercussions on
the way we approach numerous questions concerning semantics
and epistemology. The fact that, to date, these repercussions have
received little attention testifies to the difficulty in breaking out of
the ’analytic’ paradigm, which nevertheless made the greatest con-
tribution to 20th century philosophy.

At a timewhen the tools of mathematical logic are indispensable
to philosophy and semantics acquires centrality, one cannot ignore
the scope of the key concepts, which becomes decisive with regard
to two problems, which, picking up the Einsteinian lesson, are also
configured for mathematics:

(α) how to guarantee the invariance of truth from one reference
system (universe-of-discourse) to another,

(β) how to guarantee that the transition from one logic to
another has no effect on the theorems proved.

First, if a reference system is intended to be a topos, anyone who
takes up Grothendieck’s invitation to identify topos-independent
principles will find themselves investigating the conditions that
make mathematical relativity possible, and thus searching a solution
to problem (α). Second, the question raised by (β) is not from
which logic to start, but how to guarantee the stability of results
with respect to a change in logic.
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As for the problem (α), its solution, i.e. the identification of
which properties, expressible in categorical language, are invariant
forwhich transformations between one topos and another, is linked
to the complexity of the formulae with which a given property P of
a topos E is expressed. Geometric logic is precisely that which, in
sequential form (à la Gentzen), governs the proofs that are limited
to the use of such formulae. The fact that this logic is called ”geo-
metric” has to do with geometric morphisms between a topos E and
a topos E’, where a geometric morphism between E and E’ is given
by a pair of functors f∗ : E → E′ and f ∗ : E′ → E such that f ∗ ⊣ f∗
and f ∗ is left exact (i.e., f ∗ preserves finite limits and arbitrary col-
imits). In fact, for any property P, if P is expressed by a geometric
formula that is valid in E’ then the component f ∗ of such a geomet-
ric morphism preserves P, hence the property is transported to E.
However, the transport is not ensured in the reverse direction, from
E to E’ — which prevents a perfect analogy with the idea of relativ-
ity in physics, since Lorentz transformations form a group, hence
are invertible.

In algebraic geometry, the concept of a coherent topos was intro-
duced as a topos of sheaves on a site that admits a Grothendieck
topology with characteristics similar to those used to define the
compactness of a space. A point of a topos E is a geometric mor-
phism p∗ : Set → E with p∗ ⊣ p∗. A topos has enough points if for
any two morphisms f , g : A → B in E, f ̸= g implies p∗ f ̸= p∗g.
Pierre Deligne, who worked with Grothendieck, proved a theorem
(contained in SGA 4), referred to as ’Deligne’s Theorem’, which
states that every coherent topos has enough points.(31) This theorem
was recognised by André Joyal as a version of the Completeness
Theorem for first-order logic.

As for problem (β), its solution is ensured, in the case of the
change from intuitionistic to classical logic. What is referred to
as ’Barr’s Theorem’, due to Michael Barr, states that if a geomet-
ric formula φ(x1, . . . , xn) can be deduced using classical logic from
a theory T, where the axioms of T are also geometric formulae,
then φ(x1, . . . , xn) holds in every model of T in every Grothendieck
topos.

(31)A topos is coherent if it is a topos of sheaves on a site in which every covering
of an object is finite (which logically corresponds to the fact that finite disjunctions
are sufficient). For an explanation of Deligne’s Theorem and, more generally, for
a step-by-step introduction to the relations between topos theory and geometric
logic, see [13], ch. 16.
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The solution to problem (α) emphasises the role of geometric
logic, which is not a mere subsystem of ordinary intuitionistic
logic, because infinitary disjunctions are admitted. The solution
to problem (β) illustrates that under appropriate conditions the
difference between intuitionistic and classical reasoning does not
only disappear in the case of finite models (as Brouwer had already
admitted) but also in the case of models in a topos. The proof of
Barr’s Theorem, however, is not constructive, and if we move on to
universes of discourse that are not topoi, other logics are encoun-
tered and so both problem (α) and problem (β) arise again. To
tackle them, themethods distilled fromalgebraic geometrymaynot
suffice, but that does not detract from the fact that itwas thosemeth-
ods that allowed Lawvere to connect three far-reaching Theses:

(T1) a foundational perspective is possible which, instead of
starting from constructive or computational motivations to adopt a
logic, intrinsically determines the logic as a function of a sufficiently
structured mathematical universe-of-discourse (such as, for exam-
ple, a topos);

(T2) one can disregard ∈ to characterise the structure of a math-
ematical universe-of-discourse;

(T3) founding is not the same as finding axioms that identify an
ambient mega-category as a sort of ’absolute space’.

§ 7. — Concluding remarks.

Theses (T1)-(T3) are met with various objections and have in
fact been contested by set-theorists, logicians and philosophers.
Against (T1): Even assuming that ideas from algebraic geometry
were useful for ’categorical logic’, the importance of those ideas is
reduced to their heuristic value. Against (T2): autonomy from a
set-theoretic meta-theory has not been proven. Against (T3): plu-
ralism with regard to mathematical universes-of-discourse tacitly
presupposes a unitary framework, which after all motivated the
very investigation of Cat, the category of all (small) categories. A
common element to these objections is the denunciation of a circu-
larity flaw. These three objections can be variously answered. To
give just one example about (T1), the identification of which logics
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correspond to which types of categories is an essential refinement
of classical model theory, which remains a pillar of logic.(32)

Bourbaki might have looked favourably on these three Theses
were it not for the fact that, as mentioned above, the first book of
the Éléments de mathématique relied on an axiomatisation in terms of
∈, so when it came to the notion of a set, the structuralist approach
was put on hold and the received view was aligned. But even when
one makes the hierarchy of sets depend on the complexity of the
formulae defining them or on the constructive character of proofs
(see intuitionistic set theory), one assumes that the logical struc-
ture is autonomous from the structure of the universe-of-discourse;
and since there is a primary and all-encompassing universe-of-
discourse, the problem of invariance does not arise.

On the one hand, the logic used in describing local properties
(relative to an ambient set) of the structure of the universe of sets
is intended to coincide with that used to describe its global proper-
ties and also with that used in the meta-theory. On the other hand,
the plurality of logics can hardly be reconciled with an ’absolute’
system of reference, and so we fall back on reasons of mere utility
behind which an extreme relativism thrives, perfectly in line with
the character of linguistic conventions attributed to logical principles
by Rudolf Carnap as early as 1934 (§ 17): ”our attitude is expressed
through the formulation of the ’principle of tolerance’: it is not our
task to establish prohibitions, but only to arrive at conventions [...].
In logic there are no morals. Everyone is free to construct his own
logic, i.e. his own form of language, in the way he wants’, [4].

But if each universe-of-discourse has its own logic, what is the
logic of the meta-language in which it is recognised that the logic
of a given universe-of-discourse U is different from that of another
U∗? Could the logic used to justify conventionalism be considered
as conventional as that relating toU and that relating to U∗? Orwas
the Riemannian demand for intrinsicity only confined to geometry?

As we have seen in § 6, it is possible to establish the invariance
of the truth of geometrical propositions from one topos to another
under precise conditions. Just as it was not obvious that there could
be an intrinsic geometry, so it is not obvious that there can be an

(32)For an extensive historical reconstruction of the origins and subsequent devel-
opment of categorical logic, startingwith Lawvere’s insights, but especially thanks
to the research of André Joyal and Gonzalo Reyes, see [27], with specific reference
to categorical model theory.
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intrinsic logic and that there is a close connection, far from conven-
tional, between the invariance of the truth of a proposition (from a
model in one topos to amodel in another topos) and that particular
type of adjoint functors between one topos and another, which are
called ’geometric morphisms’ not by chance. But if problems (α)
and (β) have philosophical significance, so does their solution.

It cannot be denied that set theory has a broader scope than alge-
braic geometry and that, in fact, concepts and principles of logic
and set theory are employed in algebraic geometry. This, however,
does not close the matter because the very search for invariants pre-
supposes access to a battery of notions whose content is rooted in
underlying intuitive patterns of spatiality. The gap that Enriques
did not fill has only begun to narrow thanks to the developments
in algebraic geometry and the associated key concepts in categor-
ical terms, whereas the gap has remained unchanged in the main
foundational approaches:

• Frege, the father of logicism, after eliminating all reference
to intuition from arithmetic, came to think that intuition is
essential in geometry, so we should admit that there are
mathematical propositions whose truth is, in Kantian terms,
synthetic a priori after saying that mathematics is reducible to
logic and that logical truths are analytic.

• Brouwer referred to an intuition that is linked to the notion of
time in order to exclude non-constructive reasoning, butwhen
we speak of the structure of time, we (metaphorically) exploit
spatial notions, and the topologist Brouwer did not prove his
fixed point theorem by adhering to constructive scruples.

• Hilbert confined the reference to intuition on the level of
(finite) symbol manipulations, but what makes this intu-
ition possible after setting aside geometric intuition was not
explained.

As for the controversy betweenHilbert and Frege over the notion
of truth in mathematics, the lesson drawn in the twentieth cen-
tury was that Hilbert was obviously right and Frege was obviously
wrong, because the only thing that matters is to ensure that a set of
axioms is non-contradictory; moreover, semantics is reduced to the
translation of a theory T into the syntax of set theory (supposedly
non-contradictory).
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Category theory incorporates the idea that, in addition to struc-
tures, individual objects satisfying a property expressible in the
language of the theory are also only identifiable up to isomorphism,
so one might have the impression of a further departure from the
intuitive notions of ’meaning’ and ’truth’, were it not for the fact that
the picture of semantics changes the moment theories themselves
are treated as categories, so that their models are the image of func-
tors, thereby constraining the range of interpretations, and at the
same time the class ofmodels expands because it also includesmod-
els in categories other than sets. No less important is the fact that if
a theory, understood as a category, has a generic model, then every
othermodel of it is derived from that (via the unit of an adjunction),
and that the methods required for this, when considering theories
expressible in a ’geometric’ language, were elaborated within the
framework of algebraic geometry. But the ability to understand a
commutative diagram still has to do with an intuition that is pre-
supposed by the theory and involves kinaesthetic patterns that in
turn require a mathematical description.

In recent decades, the problem of foundations seems no longer to
be felt as it was until the 1970s, not so much because the sense given
by Lawvere to the foundational task has been generally accepted, but
for two basic reasons and one, so to speak, accompanying reason.

The first reason is that, with the explosion of so many new areas
of research, and in particular those related to computer science, a
pragmatic mentality has spread that leads one to use mathematical
tools useful for one’s research purposes, without bothering about
the foundations onwhich these tools rest. The second reason is that
foundations, ever since they were established as an object of mathe-
matical investigation, have become an increasingly specialised area
with an increasing number of ramifications, until they have become
a labyrinth far removed from actual mathematical practice. The
accompanying reason is that whereas the philosophical positions
referred to used to be one with a research program in mathemat-
ics, for some time now research in the philosophy of mathematics
has been predominantly oriented towards comparative analysis
and looks at the work of mathematicians from the outside without
direct collaboration with them.

However, in recent decades, the landscape of the relationship
between logic and category theory has also been enriched by new
lines of research, which, starting from the identification of the ’inter-
nal’ logic of a topos, have focused on the language of type theory.
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Categories without diagonal maps were identified, thanks to
which it was possible to formulate the categorical semantics of lin-
ear logic and locally closedCartesian categories. For such a category
C, the slice categoryC/A over any objectA is Cartesian closed, with-
out C having the terminal: these categories were used to interpret
theories admitting types dependent on the terms of other types.

Then there are the categories that have provided models for
second-order lambda-calculus, in which what in theoretical com-
puter science is called ’polymorphism’ (for types-of-data and
functions between them) is expressed. Indeed, the interest in
higher-order functional programming languages has led to cate-
gories that require additional resources to those expressible in a
topos and, thanks to such resources, correspond to constructive
theories of types (such as that of Per Martin-Löf) of particular rel-
evance to theoretical computer science, up to the formulation of
a homotopic theory of types (developed from an idea of Vladimir
Voevodsky), proposed as a foundation for all mathematics.

The fact remains that it was the growing abstraction that took
shape in algebraic geometry that highlighted the key concepts that
then allowed a close relationship between logic and geometry to
be specified. This relationship, in turn, led to the identification of
’universal’ constructions, configuring a new sense to be given to the
foundations and at the same time setting up the tools to arrive at a
satisfactory answer to the question (*).
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