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2 A. Michel M×Φ

Mathematicians have often referred to certain results — usually
statements, formulas or theorems, or even past or present problems
— as ‘profound’. But what exactly do they mean by this? They
also sometimes speak of ‘power’ (especially for a theory) and, in
another register, of ‘beauty’ or ‘elegance’ (especially for a proof).
Such expressions are part of the language of comments that goes
with any discourse on science. Is this just rhetoric? On the contrary,
our hypothesis here is that such use is an indication of epistemo-
logical analysis. Assuming that mathematicians are not the least
well placed to assess the value or significance of a mathematical
result, we have to conclude that reflection onmathematics can only
benefit from an elucidation of the meaning of these spontaneous
comments. What is then their general meaning?

Of the more or less common terms mentioned above, ‘depth’ is
undoubtedly the most interesting and problematic in terms of inter-
pretation. Unlike beauty or elegance, it does not clearly belong to the
aesthetic realm. The question of whether mathematics is a science
or an art is an age-old one that has often been asked.(1) While it is
difficult to answer, at least the meaning is clear. The same cannot
be said for the question of depth. Moreover, depth does not belong
to the class of terms that could be used to refer to internal features
of mathematics, such as ‘force’ or ‘power’. Indeed, it seems easier to
give these terms a precise meaning— if not an epistemological status
— simply because logic offers us strict conditions for defining their
use.(2) There is something more hidden, and therefore more attrac-
tive, about ‘depth’. One might be tempted to say that the issue here is
clarifying the process of mathematical creation, but this can only be
intrinsically different from the aesthetic process, since it is clear that
the subject here is essentially theoretical. Can we gain a conceptual
understanding of the conditions of profound results in mathematics?

(1)According toAndréWeil. Kronecker had put this question to Eisensteinwhen
the latter defended his thesis (introduction to the edition of Eisenstein’s works,
Œuvres scientifiques, Paris, vol. III, p. 400). The same André Weil, in his 1936 letter
to Simone Weil, ponders the possible comparison between the creation of a work
of art and that of a mathematical theory: ibid., vol. 1, pp. 254-255.

(2)A theory T1 is said to be more powerful (representatively) than a theory T2,
either when it can be interpreted in T2 by means of definitions, or when there is
a representation (for example, a Gödelian or Tarskian representation) of T1 in T2.
For example, the usual Cantorian theory of sets is more powerful than the theory
obtained by deleting the infinity axiom in the same theory.
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We can at least attempt to outline such an approach by examining a
few historical examples.(3)

1. Although Jean Desanti’s reflection on mathematics is not pri-
marily concerned with making sense of the various categories of
the mathematician’s language, it has encountered the problem of
depth. In Les Idéalités mathématique,(i) Desanti isolates three pred-
icates at a certain point in his analysis in order to apply them to
what he delimits as a ‘domain of reactivation” in the ‘reflexive field’:
power, richness and depth — the latter of which is said to be ‘the
most difficult to pin down’. The link with the problem of creation
is recognised since it is asserted that an ideality can be more or
less fertile depending on the region of the field through which it
is approached; this region will determine whether it engenders a
‘superficial’ or ‘profound’ domain of reactivation. Desanti’s con-
clusion illustrates the scale of what is at stake and the difficulty of
the task: ‘It is in this metastable depth that the regulated, yet non-
mechanical, game of mathematical creation appears to unfold’.(4)
The notion of reactivation, proposed at the end of Les Idéalités...,
may enable us to establish a framework for an analysis properly
articulated with history. As we know, one of Desanti’s key episte-
mological theses is that an ideal object, and a mathematical ideal in
particular, is never simply given or ‘offered by its mere presence’,
but always ‘through the mediation of the regulated system of des-
ignations that make it possible to handle it’: ‘Every object-ideality
is grasped in the form of a field-ideality’ (pp. VI–VII). However,
reactivation is nothing other than mediation in action — the exer-
cise of all mediations. Thus, the mathematical entity represented
by

√
2, for instance, is silent in itself and only reveals its possible

meaning through the mediation of a symbolic language. This lan-
guage then frees up the field of its possible effectuations, such as
the root of an algebraic equation, a Dedekind cut on the set of ratio-
nal numbers or the limit of a Cauchy sequence of real numbers
and so on. Such effective verifications of meaning occur in specific

(3)We will base ourselves here on an essay by G. Granger, What is a Profound
Result in Mathematics? Philosophy of mathematics today, E. Agazzi & G. Darvas
eds, Kluwer Ac. Publ. 1997, pp. 89-100.

(4)Les Idealities..., p. 281.

(Editor) (i)Les Idéalitésmathématiques. Recherches épistémologiques sur le développe-
ment de la théorie des fonctions de variables réelles. Éditions du Seuil (L’ordre
philosophique), Paris, 1968, 2008.
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contexts each time. They open up many different operative pos-
sibilities and represent many ‘thematic’ aims of the properties of
the object

√
2. This last epithet broadly designates what concerns

the properties of objects rather than objects themselves. Mediations
are organised within a closed, circular system of indefinite cross-
references (renvois) between these possibilities and objectives. There
are always possible pathways (voies de passages) between them. The
field is structured in depth, in layers (it is always shown in perspec-
tive, cf. p. 121 ff.): in short, it is temporalised. Without going into
the details of the analyses of ‘temporal horizon structures’, we can
say that reactivating an ideality involves changing the function of a
region of the field. Initially defined as the goal of a reference (ren-
voi), it now appears as a source. Equality or equivalence between
two expressions of integers, for example, is a formal relation which
can refer to very different contexts depending on how we consider
them in terms of the elaboration and complexity (richness and
power) of their mathematical content. For instance, consider inte-
gers in the context of elementary arithmetic (i.e., addition). Now
consider the same number in a more sophisticated mathematical
context, such as an analytical expression of the ‘factorial’ function
(i.e., a limit) or as an index or a topological invariant, for example
in algebraic topology.

In order to understand the meaning of such equality, it is impor-
tant to consider the mediations that give them meaning and then
to return to the theoretical system of which the object-term of the
equality is a part, i.e., in which the equality ‘operates’ (fonctionne).
This allows us to return to the initial goal of the reference (renvoi):
to reactivate the object by creating a connection between previously
dissociated domains. This establishes a link with the problem of
creation and opens up the field of history, as the paths of passage
are unprecedented. In the middle of the nineteenth century, for
example, Riemann could be said to have ‘reactivated’ Archimedes
in the sense that his concept of the integral was defined as the
limit of sums that corresponded directly to those considered by the
Alexandrian mathematician.

Although the concept of history is present, Desanti’s analysis
does not focus on actual history. Regarding reactivation, Desanti
notes that it is unclear whether Riemann was an assiduous reader
of Archimedes. However, he argues that this in no way negates
the fact that a whole region of the Archimedean field was within
reach of reactivation for the idealities that Riemann produced. As
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we were warned at the outset, the philosopher must reflect, and
it is the philosopher-epistemologist’s role to ask how mathematics
is produced, reconstruct the movement of knowledge production
and decipher the network of meaningful connections that consti-
tute this mathematical universe as a cultural phenomenon. Within
the framework of such an analysis, the problem of the meaning to
be given to depth in mathematics can only be the epistemological
determination of the notion. At the same time, the field remains
open to historical analysis. On the one hand, this analysis can be
used for its own purposes; on the other hand, a more inductive
approach can be taken, based on historical examples. We might
even hypothesise that history and philosophy offer no more than
an opportunity to verify that, however fine-tuned and precise an
epistemological analysis may be, it leaves an ineliminable residue.
2. Let’s start by looking at a few examples and trying to iden-
tify the characteristic thematic components of a depth. Broadly
speaking, these components can be grouped into three themes:
unpredictability, generality, and fruitfulness.

The first of these features can be explained by amore general fact:
the opacity of content. As we know, Cavaillès strongly emphasised
that mathematical truths were unpredictable. He even considered
this to be a fundamental feature of their development, alongside
necessity. According to him, it is in this sense that the history of
mathematics is a true history: it does not develop according to
a plan, but thwarts forecasts and reveals surprises instead. This
explains his comments on abstract set theory, where he talks about
‘these unexpected inflections of mathematical development’ and
its ‘ironic abandonment of the paths that an attempt at prediction
opened up before it’. This is the antithesis of Wittgenstein’s views
in the Tractatus, (6.22) where he states that if mathematics shows
in equations what logic shows in tautologies, then it is understand-
able that there can never be any surprises in mathematics or logic
(6.1251).

Let’s consider the simple example in number theory of the
method of proof known as ‘infinite descent’, which was first formu-
lated by Fermat. We know that if a sequence of natural numbers
is decreasing, it is necessarily stationary and cannot be strictly
decreasing. This method shows that a given property or relation-
ship is impossible for any number by proving that if it were true
for a particular number, it would also be true for smaller numbers.
This same argument then implies that it would be true for even
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smaller numbers and so on ad infinitum. However, this is impossi-
ble because any decreasing sequence of numbers must necessarily
end. In short, if the hypothesis that a given positive integer has
a certain property implies the existence of a smaller integer with
the same property, then no integer has that property.(5) Some of
Fermat’s most beautiful results can be traced back to this idea, yet
no one had ever suggested it before. It is a genuine mathematical
creation, and in his letter to Carcavi of August 1659, which is like a
mathematical will, he talks at length about this unforeseeable sin-
gularity:(6)

“As the ordinary methods described in the books were
insufficient to demonstrate such difficult propositions, I
finally found a rather unusualway to achieve it. I call this
method proof the ‘infinite or indefinite descent’. Initially,
I only used it to prove negative propositions, such as [...]
that there are no right-angled triangles whose area is a
square number.
However, this method can also be applied to affirmative
propositions, such as any number being square or com-
posed of two, three, or four squares.
I show that if a given number were not of this nature,
then there would be a smaller number that would not be
either. Then there would be a smaller number than that,
and so on ad infinitum. From this, we can infer that all
numbers are of this nature.”

It was methods such as these that enabled him not only to prove
his ‘little’ theorem: if p is prime, and a an integer, then p divides ap − a,
which is one of the most fundamental properties of integer arith-
metic...and to study the numbers now known as Fermat numbers,
of the form 22n+1 (which are not necessarily prime, although any

(5)It is therefore a kind of adaptation to integers of the refutation by the absurd.
Naturally, as the text quoted below shows, inversion is possible, which demon-
strates a given property by prohibiting the determination of a procedure whose
repetition would lead to an infinite descent of numbers. Many examples of the
use of this method can be found in Fermat himself: for example, he established
the fundamental property of the division of natural numbers, or, in a margin of
his copy ofDiophantus’sArithmetica, the fact that the area of Pythagorean triangles
(rectangular triangles whose sides have integer lengths) cannot be square.

(6)Quoted in J. Itard, Arithmétique et théorie des nombres, Paris, 1973, p. 41-45
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M×Φ Mathematics and ‘Depth’: the example of number theory 7

prime number of the form 2k + 1 is of this form),(7) as well as to
state propositions that had remained in the state of hypotheses,
such as Fermat’s last theorem.(8)

To make things a little more precise, we should start by saying
that in mathematics, this opacity is that of content. We can also use
this to justify Wittgenstein’s remark, who was probably thinking at
the time of formalmathematics that is similar to, and perhaps a sim-
ple development of, formal logic. Mathematics produces content
and, wemight add, singular content. If a whole aspect of profound
results lies in the revelation of the unknown, this is because a sui
generis reality first imposes itself as something unexpected. This is
undoubtedly why Cavaillès often describes the mathematical pro-
cess as singular and even speaks of a ‘singular essence’ in the final
pages of his posthumous work. Granger also highlights this phe-
nomenon when he points out that the transparency of the rules,
based on the adequacy of the object and the operation, which leaves
nothing to chance, as Wittgenstein describes it, is not maintained
beyond elementary logic. Unlike in formal logic, where consistent
and complete systems such as the calculus of propositions are used,
the application of rules in mathematics does not exhaust the reality
of the object. As soon as we enter the field of properly mathemati-
cal objects — even in the calculus of predicates — the functioning
of the rules is no longer self-evident; the existence of the obstacles
revealed is a sign of residual opacity.

This specific consistency of the object was manifested in mathe-
matics very early on, as soon as rules and objects were established,
i.e., as soon as calculation began. This occurred even before Greek

(7)A magnificent example of the singular and unpredictable nature of the prop-
erties of these numbers was provided by Gauss, who demonstrated — at the age
of 18! — that, when they are prime, the circumference can be divided into n equal
parts (or a regular polygon of n sides can be constructed) using a ruler and com-
pass (conversely, the only regular polygons that can be constructed using a ruler
and compass are those forwhich: n = 2k p1 p2 · · · pm, where p-numbers are distinct
Fermat prime numbers, and k > 0).

(8)Note that a profound mathematical fact is often associated with the formula-
tion of conjectures about it, especially in the field of number theory and related
fields. We know that there can be a long delay between such conjectures and their
demonstration (see the example of Fermat’s conjecture). It is as if the mathemati-
cian, finding himself initially unable to grasp the profound fact by means of the
strict procedures of demonstration, was placed in the necessity of proceeding by
intuitive apprehension of the result. Hence the value, and the role, of theoretical
intuitions in the development of mathematics, too often underestimated in favour
of the mere demonstration of results.
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mathematics, in Babylonianmathematics. If Babylonianmathemat-
ics is genuine, we must recognise the position of mathematical acts
performed on the objects of an authentic ‘operative field’, which is
nothing other than the systemof reciprocal relations throughwhich
these acts make sense of each other. These relations are always
regulated, which is why such a field can be said to be normed in
Desanti’s sense, and not purely intuitive, since the rules make the
act operative by objectifying it. Consequently, even at this very
remote point in the development of mathematics, we observe what
G. Granger refers to as the duality of the object and the operation.
AsM. Caveing(9) has demonstrated, there are at this early stage two
types of properties: those of the objects of the field, which can pro-
hibit certain acts such as subtraction or inversion, and those of the
operations themselves, which primarily determine the chain of acts.
Each object is said to manifest as an operative singularity, which,
when authorising an operation with another or prohibiting it, is
said thereby to possess such a property. This is the origin of the
objectivity of the field: a property of the field is converted by the
subjectivity of the mathematician-calculator into a property of the
object. The properties of the field govern the operations that take
place within it and therefore also how objects are produced. The
process can only be carried out in accordance with the operative
field’s intrinsic laws, and the field inevitably manifests resistance
and opacity.
2. The second thematic feature of depth would lie in the gener-
ality and abstraction of the objects in question. It is important to
emphasise that these features merely express the conceptual con-
tent of mathematics. It is important not to confuse the objects’ most
apparent aspect — their abstract generality — with their status as
products of conceptual thought.

From the outset, we should stress that the profound result
enables us to reach a point of reference that is often assumed or
expected as a general condition awaiting precise definition and
formulation (which brings us back to conjectures). However, we
would also argue that the profound result is an operative condi-
tion as opposed to a logical or set-theoretical foundation (or one
of the more modern forms, such as category theory). There is a

(9)See M. Caveing, La constitution du type mathématique de l’idéalité dans la pensée
grecque. Atelier de reproduction des thèses de l’université de Lille, 1982,1.1, p. 493-
494.
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M×Φ Mathematics and ‘Depth’: the example of number theory 9

foundation, if you like, but it is operative rather than logical or set-
theoretical. Alternatively, we could say that this new condition lies
latent in what Kronecker termed ‘real mathematics’ and must be
extracted to provide a precise formulation.

Let’s consider Kummer’s invention of ideals, which remains
within the realm of number theory. One result that can be estab-
lished using Fermat’s method of infinite descent (there are many
other possible demonstrations) is the fundamental theorem of
arithmetic (the ‘FAT’): any integer can be uniquely decomposed into a
product of prime numbers.(10)

This fundamental property of natural integers does not hold
in other number systems. For example, in certain non-Euclidean
rings of integers, such as the set of numbers in the form a + b

√
−5

usually denoted denoted Z[
√
−5], it is possible to obtain two

essentially different decompositions of the same integer. Thus,
6 = 2 × 3 = (1 +

√
−5)(1 −

√
−5). It was to reinstate this unique-

ness of decomposition that Kummer developed ideal numbers, a
paradigmatic example of a mathematical profound result. This
decomposition led Kummer to create ideal numbers, which are a
paradigmatic example of mathematical depth.

Due to specific historical reasons, Kummer initially worked with
unusual integers known as cyclotomic. These integers are derived
from numbers with “roots of unity”, such as an = 1 (which can
be represented geometrically as points for cutting out the circle).
Kummer had to decompose these integers into their prime factors.
In caseswhere these factors do not exist (aswith 47), Kummer intro-
duced so-called ‘ideal’ prime factors instead, while maintaining

(10)Or any integer can be uniquely put into the form of a product of a certain num-
ber of prime factors, possibly repeated (each of which may therefore be raised
to a certain power). The so-called standard form of decomposition is obtained
by choosing the ascending order and the uniqueness of the factorisation takes
place up to the order, i.e., with a possible rearrangement of the factors. The FTA
(Fundamental theorem of arithmetic) can be said to exhibit the structure of the
natural numbers in relation to the operation of multiplication. It shows that the
so-called prime numbers are the elements from which all the natural integers can
be obtained by multiplication, carried out in every possible way. But when all
these multiplications are carried out, the same number cannot appear in two dif-
ferent forms (one of the reasons, as we know, for not making 1 a prime number is
that it would mean making an exception to the law of uniqueness of decomposi-
tion). Hence the fundamental place given to the theorem in modern expositions
of number theory (see, for example, G. H. Hardy’s classic treatise G. H. & E. M.
Wright (An Introduction to the Theory of Numbers.)
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most of their usual desirable properties. He set out these proper-
ties explicitly in his secondmemoir on the subject in 1847, including
the laws of product, divisibility and so on. This resulted in a the-
ory analogous to the theory of ordinary arithmetic. Except for the
basis of the theory being the concept of prime divisor, the theory
was analogous to ordinary arithmetic theory. Remarkably, how-
ever, Kummer did not immediately define this concept of divisor.
Instead, he specified operatively the notions of divisibility by such
a divisor (i.e., of one ideal number by another) and of congruence
modulo such a divisor (since divisibility is defined by congruence
conditions).

He operatively specifies the notions of divisibility by such a
divisor (i.e., of one ideal number by another) and congruence
modulo such a divisor, since divisibility is defined by congruence
conditions. He defines congruence statements between a given
cyclotomic integer and a prime divisor to explain what it means
to say that the former is divisible by the latter. The result is a fac-
torisation of the (cyclotomic) integer into prime divisors, rather
than (cyclotomic) prime integers(11). A factorisation into cyclo-
tomic integers only occurs if every prime divisor is a divisor of a
cyclotomic integer. For example, the prime divisors of 47 are not
divisors of cyclotomic integers. In this case, factorisation unique-
ness fails. In general, there are two situations.

In cases where the number has an existing or current prime divi-
sor, the two types of divisibility or congruence are identified: one
is modulo the existing (or current) number, and the other is mod-
ulo an ideal prime divisor. The new definition coincides with the
old one as soon as the latter is valid. However, the new definition
is valid in cases where the old one was not. Congruence modulo
the prime divisor of 47 is defined even if there is no cyclotomic
prime integer that divides 47. Therefore, when there is no existing
(or current) prime divisor, divisibility (and congruence) modulo
a prime divisor becomes divisibility (and congruence) modulo an
ideal prime divisor. Operative statements involving divisibility
and congruence modulo a prime divisor retain their meaning even
when there is no prime divisor.

Let us emphasize the following point: in this original procedure
of ‘idealization’, the structuring of the condition remains constantly

(11)The relation in the ring of integers generated by the nth roots of unity ‘to be
divisible by the nth power of a kth ideal prime’ amounts to defining a valuation on
the ring, but the notion would not be developed before the turn of the century.
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operative.(12) The context of Kummer’s invention is typically a con-
text of use. Throughout these investigations, Kummer is guided by
his experience with calculations on cyclotomic integers (or within
the ring of such integers), and it is clear that, in general, his
approach remains fundamentally analytical and inductive. This is
particularly evident in his 1844 work, in which he attempts to fac-
tor binomial numbers (of the form [x+ ajy], whose prime factors he
knows to be the simplest within the arithmetic of cyclotomic inte-
gers.(13) Assuming, according to the classical method of analysis,
that one such factor is known, he tries to deduce sufficient infor-
mation from the consideration of particular numbers (induction)
to make possible the explicit construction of prime divisors in a
large number of cases. It is precisely the observation that there are
cases where this constructionmethod fails to yield the expected fac-
tor that leads Kummer to abandon the naïve assumption of unique
factorization.(14) Inductive analysis thus essentially relies on the
results of computations. The theory ultimately emerges as the prod-
uct of this work, as an abstraction created from — or built upon —
the manipulation of algorithms (especially those concerning divis-
ibility).

With the process of theorization, the second feature mentioned
earlier becomes apparent: in a profound result, there is the possibil-
ity of connecting scattered facts within a more general and abstract
theory. This is clearly illustrated byDedekind’s theory of ideals—a
set-theoretic, rigorous, andpure theory that played an essential role
in the development of modern mathematics, and has often been
commented on as such.

As with Kummer, the problem for Dedekind was to define ‘ideal
prime factors’ in such a way that fundamental properties would
remain valid. His first formulation, dating from 1871 (in the

(12)This is not quite a generalisation of the kind we have already made about
numbers: an ideal number is not really a generalised species (or class) of complex
numbers. Several different complex numbers determine the same ideal number,
since cyclotomic integers that differ only by amultiple of unity have the same divisor.
(13)De numeris complexis qui radicibus unitatis et numeris integris realibus constant,

1844; Collected Papers, André Weil ed., Berlin, Heidelberg, New York, 1975, vol. I,
p. 165-192. The reasons for choosing such numbers are both structural and histor-
ical: the first attempts to prove Fermat’s theorem (notably by Lamé and Cauchy)
involved factoring into this type of integer...
(14)An abandonment or a break made easier by the counter-examples known

since Fermat (which can be found in Euler, Liouville or Jacobi) and the awareness
since Gauss of the need to produce a demonstration in these matters.
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Supplement to the second edition of Dirichlet’s Vorlesungen über
Zahlentheorie), is, from this point of view — as he would later
acknowledge — nothing more than Kummer’s theory presented in
‘new clothing’.(15) Kummer had given a central role to the notion
of the divisibility of one ideal by another, defining it via congru-
ence conditions (two ideal numbers are equal if they are divisible
by the same ideal prime numbers, with the same multiplicity). He
described his ”ideal prime divisors” by means of divisibility tests.
The general case will have exactly the same definition.

Dedekind begins with the following point. The essential prop-
erty of an ideal number (always understood here as a complex
number) retained by Dedekind is whether or not it divides an
actual number. One knows everything there is to know about an
ideal number if one knows the (actual) numbers it divides. From
this, he is naturally led to consider the set of integers of the field
which are divisible by a given product of ideal prime factors, and
to take this set as the representative of that product — this is the
ideal. To each integer, one can thus associate the set I of its multi-
ples. The problem of defining the ideal number is thereby replaced
by the problem of defining the set I (called an ideal). Dedekind
then characterizes it as a subset (he says ‘system’) of the collection
of integers (in fact, a subset of a unital commutative ring A) closed
under addition and multiplication by any element of the ring —
these are the two classical properties, remarkably simple in form,
which manifest here in the case of cyclotomic integers (more pre-
cisely, in the case of the integers of a number field K):(16)

1. The sum of two cyclotomic integers belonging to a given ideal
also belongs to that ideal.

2. The product of a cyclotomic integer belonging to a given ideal
with any cyclotomic integer belongs to the given ideal.

(15)Cf. §162 (end) of the Xth Supplement to Vorlesungen über Zahlentheorie by
P. G. Lejeune-Dirichlet, Vieweg Braunschweig, 1871; partially reproduced in
Gesammelte mathematische Werke by Dedekind, R. Fricke, E. Noether & O. Ore eds,
3 vols, Vieweg, Braunschweig, 1930-1931-1932, vol. 3.
(16)The fact that the sets (of divisible integers) under consideration have these

properties is fairly obvious. The converse is less obvious, and this is what
Dedekind is most interested in proving: any subset of cyclotomic integers having
these two properties is an ideal, i.e., the set of all cyclotomic integers divisible by A,
for a certain divisor A. Dedekind thus got what he wanted: a characterisation of
these ideal sets
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We obtain a bijective correspondence — and even an isomorphism
(with respect to the corresponding operations) — between ideal
numbers and (sets of) ideals (apart from the case of the ideal {0},
which corresponds to no ideal number).(17) These two properties
remain meaningful even if one does not already know that I con-
sists of themultiples of a single number, and one can define an ideal
as the subset of the ring possessing the relevant properties. Thus,
we adopt a high level of conceptual generality, but — it should be
noted — without preventing the establishment of a workable cal-
culus. Dedekind succeeds in defining the rules of a calculus for
entities that, while not elements of the ring, are entirely definable
from it. These entities constitute subsets or parts of the ring, which
is a decisive and essential novelty. One example is the definition of
the product of two ideals. Consequently, all the fundamental propo-
sitions of the theory can be expressed in terms of ideals, such as the
definition of a prime ideal without non-trivial factorisation.(18)

We obtain a bijective correspondence — and even an isomor-
phism (with respect to the corresponding operations) — between
ideal numbers and (sets of) ideals (apart from the case of the ideal
{0}, which corresponds to no ideal number). These two properties
remain meaningful even if one does not already know that III con-
sists of themultiples of a single number, and one can define an ideal
as the subset of the ring possessing the relevant properties. Thus,
we adopt a high level of conceptual generality, but — it should be
noted—without preventing the establishment of a workable calcu-
lus. Dedekind indeed succeeds in defining, for these entities which,
while not elements of the ring, are entirely definable from it (con-
stituting — a decisive and essential novelty — subsets or parts of
it), the rules of a calculus: for example, the definition of the prod-
uct of two ideals. In this way, all the fundamental propositions of
the theory can be formulated in terms of ideals: for example, the
definition of a prime ideal, without non-trivial factorisation.
(17)Dedekind’s formulationfits entirely into (whatwenowcall) the ring of integers of

an algebraic number field, which can be any field K. It is very characteristic not only of
Dedekind’s practice, but also of hismathematical philosophy, to choose as a symbol, to
represent all the elements of the field under consideration, the single letter K, without
any indication of a coordinate, in preference to K(a), which suggests a particular base.
For Dedekind, it is the field that matters, and the explicit representation of the field
in the form Q(a) for example (a being the solution of an algebraic equation over Q),
which is the result of an arbitrary choice, can, and therefore must, be avoided.
(18)An ideal is prime if it is neither the set reduced to zero nor the set of all cyclotomic

integers of a given field and satisfies the following property: if the product of two
elements belongs to the ideal, then at least one of the two elements must belong to it.
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The success of Dedekind’s theory is indeed explained by the level
of generality and abstraction thus achieved. Its historical role in the
development of abstract algebra is comparable to that of Leibnizian
notation in the emergence of infinitesimal calculus. In support of this
claim, it is sufficient to note that, to this day, scarcely any presenta-
tion of algebra fails to invoke this set-theoretic conceptual framework.
Echoing the expressions most frequently used in subsequent dis-
course, one might say that the ‘power’ and ‘elegance’ of the theory
have earned it unanimous admiration among mathematicians who
have studied and built upon it. A single example will suffice: Hilbert
adopted Dedekind’s presentation in a celebrated memoir,(19) estab-
lishing the canonical form for all subsequent expositions of the theory.
4. As for depth — regarding which we are postponing our anal-
ysis of Dedekind’s theory of ideals — the final component we
believed we had identified was fruitfulness. The most compelling
examples of profound results always reveal the opening of new
fields of mathematical inquiry. This extension is itself made pos-
sible by the degree of generality attained and is inseparable from
it. The theory of ideals would, once again, provide a remarkable
example of this phenomenon.

The problem that arose after Kummerwas indeed, asDedekind’s
example shows, that of generalizing the theory. This general-
ization is based on a key notion: that of an integer within a
field of algebraic numbers — the crucial point being the cor-
rect determination of the ring to which the theory of ideals
applies. Now, there are several ways of determining this ring.
The first, just mentioned, is Dedekind’s approach in the second
edition of Dirichlet’s Vorlesungen... It consists of a direct general-
ization of Kummer’s approach. The other two are: Dedekind’s
later version — which might be called his ‘second theory” (in
fact, there were several later versions)(20) — and Kronecker’s
(19)D. Hilbert, Die Theorie der algebraischen Zahlkörper, Gesammelte Abhandlungen,

vol. l, pp. 63-363.
(20)Disappointed by the lack of success with his first version, Dedekind wrote a

long treatise which was published in French in the Bulletin des sciences mathématiques,
under the title: Sur la théorie des nombres entiers algébriques (and almost identical in
content to the version in the 3rd edition of Dirichlet’s Vorlesungen... by Dirichlet, pub-
lished in 1879). The final version of the theory, published in the 4th edition of the
Vorlesungen... develops a completely new arithmetic of modules, subgroups of the
additive group of complex numbers, with a very general theory of the negative
powers of certain modules. The theory applies in particular to ideals, and makes
it possible to give meaning to fractional ideals. An even different version would be
based on his ‘Prague theorem’ (published in 1892, but found in 1887).
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formulation.(21) Whether one adopts Dedekind’s version (as was
initially the case, notably by the most illustrious follower of this
path, Hilbert) or Kronecker’s (whose merits took longer to be fully
acknowledged), the result is the same— and it is a remarkable one:
the establishment of algebraic number theory, with its extensions,
notably the development of class field theory. As for the fruitful-
ness of the theory initiated by Kummer, this indication may suffice,
and we should not attempt to convey even a rough sense of it here.
5. We would now like to confront the results of the epistemologi-
cal analysis outlined at the beginning — based on the suggestions
from Idéalités Mathématiques — with a few simple historical facts.
One of these is difficult to ignore: mathematics is made by mathe-
maticians. There are profound mathematicians: they are the ones
who discover profound results — they are the great mathemati-
cians. Now, it is a fact that these individuals do not necessarily
identify with foundational theorists, nor even with proponents of
set-theoretic abstraction (or, today, category theory). At least two
of the greatest mathematicians of the recent period can be cited
here: Poincaré and Kronecker, both of whom either ignored or
dismissed logic and set theory as unworthy of serious interest.(22)
The set-theoretic formulation, introduced by Cantor andDedekind,
may prove to be misleading in this respect. While there is undoubt-
edly a mode of abstract set-theoretic thought, as exemplified by the
(21)Grundzüge einer arithmetischen Theorie der algebraischen Grossen, Reimer, Berlin,

1882; also in Journal fur Mathematik, Crelle, 92, 1882, pp. 1-122 and in Werke, K.
Hensel, ed. 5 vols, Leipzig, 1895, 1897, 1899, 1929, 1930, vol. 2, p. 239-387. In his
first publication, Kummer himself envisaged a generalisation of his theory to com-
plex numbers of the form x + y

√
A, which would have linked it to the Gaussian

theory of the composition of binary quadratic forms. He never returned to this
question, generalising his theory in other ways.
(22)In a letter to Kummer, quoted by H. Meschkowski (Problème des Unendlichen.

Werk und Leben Georgs Cantors, Braunschwick, 1967, p. 238): ‘Like him [Kummer],
I recognised the impossibility of relying on any kind of speculation and found
refuge in the paradise of real mathematics...”, and again: ”In the field of mathe-
matics, I find real scientific value only in concrete mathematical truths, or, to put it
more succinctly, only in mathematical formulae. The history of mathematics has
shown that only mathematical formulae last forever. The various theories on the
foundations ofmathematics (such as Lagrange’s) have been set aside in the course
of time, but Lagrange’s resolvent is still there!’ (ibid., pp. 238-239). Poincaré, in
response to Russell, who felt that ‘until a complete solution of our difficulties [i.e.,
paradoxes] is found, we cannot know with certainty what volume of mathemat-
ics will be left untouched...’, replied: ‘only Cantorism and logistics are called into
question: real mathematics will continue to develop according to its own princi-
ples...”. (Mathematics and Logic, 1906).



M
×

Φ
O
nl
in
e
ve

rs
io
n

©
2
0
2
5

16 A. Michel M×Φ

school of Cantor and Dedekind, it holds no special privilege and
certainly no exclusivity, as some contemporary mathematical cur-
rents clearly demonstrate. In this regard, we would like to return
to the case of Kronecker, which we consider to be exemplary.

Our analysis of Kummer’s invention of ideals has enabled us
to realise that depth was the result of an operational procedure
rather than a theoretical determination of objectivity. This does
not mean, of course, that the process of theorisation, at all levels
of abstraction up to formalisation, is meaningless. Rather, it means
that it does not appear to be transcendentally primary, in the sense
that the condition of possibility would be provided by it. Using
Granger’s categories, we can say that, in mathematics, the opera-
tive precedes and grounds the object level (l’objectal). This is the
essence of mathematical experience, producing content and being
synthetic in Kant’s sense — applying rules of operation to symbols
and observing their results. In mathematics, there is something
synthetic a priori; the a priori consists of determining the form of
the results before they are actually observed.

From this point of view, Kronecker is a worthy successor to
Kummer. Like Kummer, he focuses on how divisors are repre-
sented rather than on their intrinsic nature, explaining what it
means to say that two representations correspond to the same
divisor (or, in his terminology, that two divisors are ‘absolutely
equivalent’). The way he expresses himself is characteristic, as can
be seen in particular in §15 of theGrundzuge andhis definition of the
divisor. On the one hand, he does not say that a divisor is an equiv-
alence class of forms— two forms a1 and a2 being equivalent if and
only if the congruence relations mod [a1] and mod [a2] coincide
— as we would say today. On the other hand, he doesn’t just pro-
vide definitions. He also explains how to perform calculationswith
divisors. Given a set of generators a1, ..., ak of algebraic numbers,
he provides what we would call today an algorithm for determin-
ing whether a given element of the field belongs or not to the ideal
generated by the numbers a1, ..., ak.

On the contrary, Dedekind does not have anything of the sort.
For him, a definition of an ideal is only considered complete and
satisfactory if it presents the ideal as an (infinite) set without any
membership condition. Nevertheless, the abstraction of conceptual
thought cannot be reduced to set-theoretic abstraction, let alone for-
mal abstraction. Kronecker’s approach to cyclotomic integers —
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defined as expressions of polynomial form, with addition, subtrac-
tion and multiplication defined as they usually are on expressions of
this (polynomial) type— is abstract and algebraic, and in this respect
is very much in the spirit of contemporary algebra. In modern terms,
the set of cyclotomic integers is the quotient of the ring of one-variable
polynomials with integer coefficients, divided by the ideal generated
by the polynomial 1 + a + a2 + · · · + al−1. Its great virtue is that it
emphasises the ‘computational’ rules of algebra for calculating the
arithmetic of cyclotomic integers, pushing all other considerations
into the background. This is a general feature of Kronecker’s work.
From the very first pages ofGrundzüge..., he devotes a very significant
section to the factorisation of polynomials with integer coefficients
or with coefficients in a field of algebraic number. Although, as
Edwards(23) notes, if his algorithms were probably not intended for
practical application, they at least made it possible to state the prob-
lem clearly and provide an explicit starting point for the solution.

There’s something else, too. Today, we realise to what extent
the true purpose of the Grundzüge was far more ambitious than
merely laying the foundations of algebraic number theory based
on Kummer’s theory of ideals. Kronecker’s aim was different and
far more significant: not merely the proper treatment of the funda-
mental problems of a theory of ideals—Dedekind’smain subject—
nor even an arithmetisation of analysis on the stricter basis of a
doctrine of integers without actual infinity (infini complet), but
something far greater. His aim was not an unfortunate attempt,
driven by his erroneous philosophical thesis and his stubbornness
in restricting the free development of analysis and mathematics
within excessively narrow limits. In reality, Kronecker had a unify-
ing vision: he aimed to develop a new branch of mathematics that
would encompass both number theory and algebraic geometry as
special domains. In other words, he sought to broaden the field
of mathematics — rather than restrict it — by opening up a vast
field for research: the development of an algebraic geometry based
on arithmetic. This was a grandiose idea that gave true meaning
to his project for a general arithmetic (allgemeine Arithmetik). This
connection between number theory and algebraic geometry under-
pins what is aptly called Kronecker’s ‘programme’. According to
some of the most renowned mathematicians of the past century,
including E. Hecke, H. Weyl, C. L. Siegel and A. Weil, Kronecker’s
(23)H. M. Edwards, An Appreciation of Kronecker, The Mathematical Intelligencer,

vol. 9, no. 1, 1987, p. 35.
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‘algebraic’ perspective, although it may appear limited by today’s
standards, actually encompasses all cases amenable to algebraic
methods. As A. Weil argues, despite the insistence in modern alge-
braic geometry on the use of arbitrary base fields, there is a very
real sense in which any theorem accessible to algebraic methods
(as distinct from analytic or topological methods) can be consid-
ered a theorem on base fields that are either finite or fields of
algebraic numbers. These are known as Weil’s ‘absolutely alge-
braic’ fields. This is exactly what Kronecker’s perspective means:
‘Absolutely algebraic’ fields are the natural base fields of algebraic
geometry.(24)

Like Galois’ example, Kronecker’s shows that such a construc-
tion can be so broad and novel that it takes decades to understand
it fully. Ultimately, this is an infallible sign that this conception
deserves to be described as ‘profound’, a quality that all the great
mathematicians who have studied it have agreed upon. When
presenting Kronecker’s significant results,(25) Hilbert lucidly high-
lights their importance in linking number theory with algebra and
the theory of functions. Unfortunately, we have to quote this text
without the commentary it would require:

“It was Kronecker who gave us the theorem that any
abelian field of numbers in the domain of rational num-
bers is generated by the composition of fields of roots
of unity [...] After Q, the simplest field is the field of
quadratic numbers. The problem then becomes extend-
ing Kronecker’s theorem to this field [...].
Finally, I believe the most crucial step is extending
Kronecker’s theorem to cases where, rather than the
domain of rational numbers or of imaginary quadratic
numbers, the domain of rationality is any algebraic num-
ber field. I regard this problem as one of the most

(24)A.Weil, ‘Number-theory and algebraic geometry’,Œuvres scientifiques, 1.1, pp.
442-452. The same algebraic point of viewmakes it possible to propose, as A. Weil
says, the study of algebraic geometry on a ring, for example the ring of integers,
or that of the integers of an algebraic number field, or that of the integers in a p-
adic field (local ring of p-adic integers): a programme that Grothendieck’s theory
of schemes has largely fulfilled. It also made it possible to develop the theory of
abelian functions, also studied by A. Weil, as part of algebra.
(25)The central result is the theorem-conjecture known as the Jugendtraum

(Kronecker’s childhood dream, as he called it in a letter to Dedekind), on abelian
extensions of quadratic imaginary fields (reduced to sub-fields of cyclotomic
fields).
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profound and important in the whole theory of numbers
and functions”.(ii)

Thus, the Kronecker episode offers us a prime example of the
‘metastable depth’, as Les Idéalités mathématiques put it, ‘in which
the regulated yet non-mechanical process of mathematical creation
appears to unfold’. As well as this epistemological lesson, there
is also a historical one. Firstly, Dedekind’s mathematical style and
approach to foundations made Kronecker’s work more difficult to
read than it actually was. Secondly, seeking to make the works
of Kummer and Kronecker accessible to students by reformulat-
ing them in his Zahlbericht, Hilbert was essentially trying to render
them obsolete. Thirdly, no one is unaware, especially in France,
of the extent to which the Bourbaki school was influenced by the
abstract algebra style of Dedekind and Hilbert, both in its presenta-
tion of mathematics and in its approach to foundations in general.
The example of the ring and the ideal of a ring, which are conceived
first and foremost as the underlying sets (Dedekind’s ‘systems’)
which are generally infinite, can be taken as an example. Lastly,
we are aware of the extent to which these conceptions also influ-
enced the French mathematical philosophy of Cavaillès. Cantor
and Dedekind were so successful that the term ‘foundations of
mathematics’ was used long after their time, and until recently, to
refer to set theory, particularly infinite set theory. In today’s age of
calculating machines, the ability to ‘test’ hypotheses and calculate
data with unprecedented speed and ease has not only changed the
way we solve problems, but also the way we think about them. It is
important to draw historical conclusions from this. The success of
Dedekind andHilbert alsomasked a failure. There wasmuchmore
in Kronecker’s work than even the greatest of future generations
of mathematicians could grasp. Only his memoirs, which offer a
glimpse of a possible revival, can convey their profound nature.

Alain MICHEL, Centre Gilles Gaston Granger
Aix Marseille Université

⋆
⋆ ⋆

(Editor) (ii)Alain Michel quotes a passage from Hilbert’s twelfth problem in
the following French translation: D. Hilbert: Sur les problèmes futurs des mathé-
matiques. Les 23 Problèmes. ”Extension du théorème de Kronecker sur les corps
abélien de rationalité algébrique quelconque”. Paris EdGabay, 1990. Problème XII
p.31, 32. For the German edition seeGesammelte Abhandlungen dritter band, Chelsea
Publishing Company, New York (1965) p. 311, 312.


