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Abstract: In this article, we examine the philosophical implications
Large Language Models might have on mathematical practice in
the near future. Some prominent researchers argue that Large
Language Models will soon have the ability to generate or check
proofs, lifting a great burden of human mathematicians.

We claim, however, that the implementation of LLM tech-
nologies in mathematics is not merely a neutral tool that assists
mathematicians to continue on as before, but instead entails a
radical change to the practices of mathematics with important
philosophical implications.

We will argue that we cannot be confident such tools will con-
tinue to work as expected, even if they become arbitrarily more
reliable than they currently are, and that the kind of justification
we get from LLM-generated proofs can never be properly math-
ematical. We will evaluate solutions to this problem involving
either computer verification or human checking and argue that
these cannot fix the philosophical gap to give us proper mathemat-
ical justification.

Keywords: Mathematical practice; Large Language Models; proof;
rule-following paradox; reverse centaur; mathematical justification;
proof assistants.
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“I think in the future, instead of typing up our proofs, we would explain
them to some GPT. And the GPT will try to formalize it in Lean as you go
along. If everything checks out, the GPT will [essentially] say, “Here’s
your paper in LaTeX; here’s your Lean proof. If you like, I can press this
button and submit it to a journal for you.” It could be a wonderful assis-
tant in the future.”

Terence Tao,
June 2024(1)

§ 1. — Introduction.

The recent arrival of Large Language Models like ChatGPT has
had immediate and widespread social, cultural and technological
impact. In this article, we will examine the philosophical impli-
cations these technologies might have on mathematics in the near
future. With seemingly amazing abilities to read and write natural
language and computer code, there is the tantalising possibility of
a computer system capable of reading, writing, and understanding
proofs just like mathematicians do. The possibilities for mathemat-
ics could be revolutionary.(2) However, these technologies are also
controversial. According to some, the vision of AI mathematicians
has suddenly moved closer to realisation, while others think these
technologies offer a deceptive mirage of understanding hiding a
systematic inability to reason intelligently. In what follows, we
examine the philosophical prospects of LLMs inmathematics, taking
an approach that tries to find a reasonable middle-ground between
the hype and the criticism, and assesses the philosophical prospects
of what is on offer.

Prominent mathematicians, like Terence Tao quoted in the
paper’s epigraph, are already predicting a future for mathemat-
ics where LLM technology plays a major role in the practices of
mathematics, which could happen in several ways. Most sim-
ply, the LLMs could generate proofs directly. Alternatively, they

(1)Taken from an interview, which appeared in the Scientific American, with
Christoph Drösser (2024).

(2)AsMartin & Pease put this: “Improved knowledge of human interactions and
reasoning in mathematics will suggest new ways in which artificial intelligence
and computational mathematics can intersect with mathematics. […] There is
much to be done, and a substantial body of research lies ahead of us, but the out-
comes could transform the nature and production of mathematics.” (Martin &
Pease 2013, p. 115)
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could be used to bridge the gap between the everyday, infor-
mal language of human mathematics, and the formal language of
computer-checkable derivations. Such a translation from the infor-
mal language of theworkingmathematician to a formal language is
known as autoformalisation, with the underlying idea that a human
couldwrite a proof for an LLM to autoformalise, then to be checked
by the computer.

Another option is for LLMs to be used as “AI-assistants”, such
as to generate examples of or counterexamples to given conjectures,
to find relevant theorems in the vast and sprawling literature, to fill
in details of routine parts of work, or to guide proof formalisation
for an interactive theorem prover. This possibility will not feature
heavily in this article andwewill set aside themore interactive uses
of AI for future work.

We will, however, argue that the implementation of LLM tech-
nologies in mathematics is not merely a neutral tool that assists
mathematicians to continue on as before, but instead entails a radical
change to the practices of mathematics with important philosophi-
cal implications. Whether such a radical change is welcome depends
on many factors, but in this paper, we will focus on the question of
whether we can trust mathematical LLMs to be doing what we think
they are. Based on the underlying technology, we will argue that
we cannot be confident that they will continue to work as expected,
even if they become arbitrarily more reliable than they currently are,
and that the kind of justification we get from LLM-generated proofs
can never be propermathematical justification. Wewill evaluate solu-
tions to this problem involving either computer verification or human
checking and argue that these cannot fix the philosophical gap and
give us mathematical justification.(3)

In § 2 we give some philosophical background on computer-use
in mathematics. § 3 provides an overview of how LLMs work, and
assesses their current mathematical abilities. In § 4, we consider
some basic objections to trusting LLM-authored proofs. In § 5,
we give an argument reminiscent of arguments from the debate
on rule-following, an epistemological analogue of the Kripke-
Wittgenstein paradox: that LLMs cannot be trusted to settle on

(3)This topic is large, sowe set aside other issues, like the interactive use of LLMs
in mathematics and the ethics of using LLMs. For instance, LLMs are extremely
energy-intensive during a climate crisis (see Schütze 2024), and the values of
AI are driven by the tech industry rather than mathematicians themselves, with
numerous potential hazards for mathematics (see Harris 2024).
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the same concepts as human mathematicians, leading to a loss of
proper mathematical justification. In § 6, we consider the response
that such purported proofs can be checked and give the “reverse
centaur” argument: that checking LLM-proofs is actually harder
than checking human proofs and thus that checking cannot give
mathematical justification where none was before. In § 7 we assess
whether autoformalisation can provide a safety net against errors
in proofs, and in § 8 we draw the paper together.

§ 2. — Proof, Justification and Computers.

The emergence of LLMs as a tool for mathematics is a new
chapter in the intertwined story of mathematics and computing.
Where to start the story depends on your definitions, whether it
is with the abacus; calculating machines like Pascal’s calculator
or Leibniz’s stepped reckoner; Babbage’s difference and analytical
engines, with Lovelace’s famous “computer program”; the Turing
machine, or the development of modern computing.

A modern milestone is the computer-assisted proof of the Four
Colour Theorem by Appel and Hakken in 1977.(4) The proof
involved a massive case enumeration, which was performed by a
computer rather than a human being. This raised a philosophical
issue about mathematical justification: does a proof that has only
been checked by a computer give the same kind of mathematical
justification as traditional proofs? Indeed, one can argue that this
is no proof at all, as was done by Tymoczko:

“What reason is there for saying that the 4CT is not really a
theorem or that mathematicians have not really produced
a proof of it? Just this: no mathematician has seen a proof
of the 4CT, nor has any seen a proof that it has a proof.
Moreover, it is very unlikely that any mathematician will
ever see a proof of the 4CT.” (Tymoczko 1979, p. 58)

He argues that the purported proof has a substantial gap that
is filled by an experiment on a computer. Therefore, the theorem
can only be known a posteriori and relies essentially on experiment
and empirical evidence provided by the computer. According to

(4)It should be noted that this wasn’t necessarily the first computer-aided proof.
Detlefsen & Luker (1980) give several earlier examples.
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Tymoczko, this is not the same standard of mathematical justifi-
cation as traditional proofs, which are supposed to give a priori
justification. Furthermore, he raises the fact that there is the pos-
sibility of error in the programming and glitches in the computer
itself. This is not an idle possibility, as programming errors are
almost inevitable in any sizeable codebase, but even hardware can
lead to relevant errors, as happened in the case of the infamous
Pentium FDIV bug in early Pentium processors that led to errors
in floating point division of certain large numbers. This bug was
discovered by the mathematician Thomas R. Nicely when errors
appeared from code he had written to generate sets of primes. We
add to this that even when functioning as intended, computers
do not necessarily do mathematics flawlessly: at the time of writ-
ing Google’s calculator will tell you that 999,999,999,999,999 minus
999,999,999,999,998 is 0 because of how processing such large num-
bers using floating-point arithmetic works. The point is that if there
is a chance that the computer is making an error, then it cannot be
the source of proper mathematical justification.(5)

There are replies available to these worries. Detlefsen and
Luker (1980) argued that many traditional proofs also rely on the
empirical consideration that humans have correctly carried out cal-
culations within the proof, so these fare no better. One can also
argue that humans are more fallible than computers at routine cal-
culations, so that the possibility of error in the proof of the Four
Colour Theorem, say, might be lower than in a complicated tradi-
tional proof. Indeed, the sociological fact is that the proof of the
4CT has largely been accepted by the mathematical community, as
have several other large-scale computer proofs, like the proof that
17 is the minimum number of clues needed for a standard Sudoku
to have a unique solution (McGuire et al. 2014; see also Parshina
2024). This latter proof consisted of a search through all 16-clue
configurations that failed to find any with unique solutions, plus
the existence of a 17-clue puzzle that has one. It would be hard to
find anybody who still thinks it is worth searching for an error in
this proof. Another response is that “you can choose your level of

(5)The mere possibility of error cannot be what rules out mathematical justifica-
tion here, otherwise we would be facing worries about epistemic scepticism. The
question, though, is what possibilities of error are acceptable. De Toffoli (2021)
provides a fallibilist account of mathematical justification, which tries to answer
this “calibrated to broad features of our social nature and cognitive architecture—
including our shortcomings.” (De Toffoli 2021, p. 824). However, she still leaves
it open whether a computer proof is verifiable a priori.
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paranoia” (Buzzard 2024, p. 219). That is, if one is worried about
errors in the computing, run it again on a different machine. If you
are stillworried, formalise themathematics (asGonthier (2008) did
for the Four Colour Theorem, for example). And so on. For every
paranoid worry, there are further ways to address them.

Nonetheless, the issue is not one of justification per se, but one about
mathematical justification, which is generally held to impose a higher
standard. It is possible to be very well justified without having mathe-
matical justification proper, by having other sources of evidence for a
mathematical claim, like the testimony of awell-informed expertmath-
ematician saying it is true. The key question is what separates out this
special kind of mathematical justification from other forms of justifica-
tion, like that of testimony or empirical evidence.

Tymoczko considered several candidate properties, but the most
relevant for our purposes is that of surveyability:

(Surveyability) A proof is surveyable if it can be under-
stood, reviewed, grasped, and verified as a complete
whole by a rational agent.(6)

His argument is that large-scale computer proofs are beyond
the capabilities of any individual to verify in this way, so are not
proper proofs. The reason we might think that surveyability is
important is that it links directly to mathematical understanding.
A surveyable proof allows us to understand some new mathemat-
ics, while a computer proof that checks lots of cases does not. There
is nothing in the computer proof that gives us an understanding of
why the magic number of Sudoku clues needed for a unique solu-
tion is 17. However, the literature on explanatory proofs suggests
that many traditional proofs might also fail to give us this kind of
understanding, so this seemingly cannot be what separates proper
mathematical justification from other kinds of justification.

Furthermore, many traditional proofs are too long to be sur-
veyable as well. For example, the Classification of Finite Simple
Groups combines results from numerous sources, totalling thou-
sands of pages, well beyond the abilities of any single individual to
survey and comprehend as a unified whole. Surveyability would

(6)Surveyability was already discussed by Wittgenstein (2001, 143-147). Several
authors discuss this notion, includingAzzouni (1994, pp. 166-171), Bassler (2006),
Coleman (2009), Secco and Pereira (2017), Habgood-Coote and Tanswell (2023),
and Parshina (2024). Daston (2019) gives amore general genealogy of the concept
of surveyability.
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rule out this kind of large, essentially collaborative proof from
counting as mathematically justified. While this goes against the
broad acceptance that the Classification Theorem has achieved, it
could be argued that there is good reason to be cautious of this
proof. Specifically, even the mathematicians involved in the collab-
oration believe that the proof contains many errors due to its large
size (see Steingart 2012; Habgood-Coote and Tanswell 2023), and
strictly speaking a proof containing errors is no proof at all. The
pragmatic solution that the mathematicians involved have to this is
the belief that all the errors are small and “fixable”:

(Fixability) “A proof is fixable when all of its errors could
easily be corrected by experts within the relevant mathe-
matical community, without needing to do any substantial
new maths” (Habgood-Coote & Tanswell 2023)(7)

The idea is that the proof may contain minor errors, but noth-
ing substantial enough to change the overall picture of the proof.
Small and minor errors regularly creep into mathematics, but fixabil-
ity expresses the confidence that nothing in these will break the proof.
The situation is akin to the “preface paradox”, where the authors are
confident in every part of the proof, but reasonably believe that there
are plenty of errors in it due to the size and human fallibility.(8)

A final case where mathematical justification seems to be miss-
ing because of the possibility of errors is that of probabilistic proofs,
such as the Miller-Rabin primality test. These allow rapid testing
of whether some, usually very large, number is prime or not, up to
an arbitrarily high probability of correctness, but, crucially, not cer-
tainty. While such a primality test is mathematical in the broader
sense, it does not seem to provide proper mathematical justifica-
tion because there is always a chance that the test has given a false
positive, indicating a composite number is probably prime. The
question then, is what separates this style of demonstration from
proper mathematical proof? Again, it could be argued that pri-
mality testing can reach such a high degree of certainty that it is,

(7)This definition already exposes the tension that is implicit here: if it truly is
a proof then it should have no errors. Maybe the fixability condition should use
“purported proof”, though against this suggestion is that if the purported proof is
fixable, then it may as well be treated as a proper proof.

(8)For a discussion of why they feel confident that there are no substantial errors,
see Habgood-Coote and Tanswell 2023, who consider Goldberg’s (2010) notion of
coverage-supported justification: that if there were a major error then someone
would have spotted it by now.
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probabilistically speaking, less likely to bewrong than a regular tra-
ditional proof is to have an error, meaning that the mere reliability
is not the issue. Easwaran proposes the idea of transferability:

(Transferability) “a proof must be such that a relevant
expert will become convinced of the truth of the conclu-
sion of the proof just by consideration of each of the steps
in the proof.” (Easwaran 2009, p. 343)

The idea of this is just that a proof should not rely on anything
outside of itself to be convincing(9), while the primality test relies
on the test being carried out and the choice of numbers to use the
test with, and those being independent of the primality of the num-
ber in question. The general idea of transferability is also appealing,
because it does seemkey to the concept of a proof that it is somehow
self-contained. Nonetheless, it is worth noting that it is not clear
that the computer proof of the Four Colour Theorem is transferable.
On one hand, it can be argued that if the whole proof, including
the massive case-checking, were put together, that by itself is a self-
contained proof meeting the criterion of transferability (see also De
Toffoli 2021, pp. 831-33). On the other hand, the reason that the
work was outsourced to the computer in the first place was that it
is too long for a person to check, so it is clearly not the case that a
relevant expert will be convinced by considering each of the steps,
because they cannot.(10)

In summary, we have seen three borderline cases of mathemat-
ical justification. The first, that of computer case enumeration,
offloads the checking of a large number of cases onto the machine.
The second, that of massively collaborative proofs, involves essen-
tial collaboration of many mathematicians who must rely on each
other, and makes it inevitable that some errors creep in. Finally,
the case of probabilistic “proofs”, which can establish claims with
extremely high degrees of confidence, but not certainty. The uni-
fying theme of these is the danger of different kinds of errors in
mathematics: errors that arise due to programming, software, hard-
ware, large scale, or just bad luck. That the first two cases arewidely

(9)To clarify, it is also implicit in what Easwaran (2009) writes that the convinc-
ing here is based on first-order reasons, or convinced in the right way. For a reply
to Easwaran, see Fallis (2011).
(10)The impossibility of checking all 1482 configurations is often taken for granted

as beyond the limits of human patience and concentration. However, the mobile
puzzle game Candy Crush Saga currently has 17495 levels, so we are not entirely
convinced.
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accepted in themathematical community, but not the third (at least,
not as counting as a proper proof), demonstrates that the matter of
mathematical justification does not come down to mere reliability.
The modal principles of surveyability, fixability, and transferability
have all been proposed as implicit in mathematical proof and justi-
fication. Below, we will see how new approaches to proof enabled
by Large Language Models fare in the face of these considerations
about mathematical justification.

§ 3. — Large Language Models.

3.1. How do they work? The underlying technology of LLMs
involves probabilistically predicting text. For LLMs with a chat-
bot interface, such as ChatGPT, the user can input a textual prompt,
and the LLM will generate a reply by sequentially predicting the
text that follows.(11) Unlike previous generations of chatbots, the
results that LLMs produce are often very well-written, eloquent,
responsive to the prompts, flexible, and convincing.

Overall, the outputs of LLMs are often very impressive, with the
systems able to produce cogent and fluent natural language texts,
which increasingly often answer the prompt successfully. However,
they have some well-known drawbacks that will be relevant to our
discussion below. Most notably, the text produced by language mod-
els often contains false but seemingly plausible information, often
known as “hallucinations”, but better called “bullshit” (see Hicks,
Humphries and Slater 2024; Frankfurt 2005), in the sense of being
indifferent to the truth of the outputs.(12) While the underlying sys-
tem has been trained on large bodies of natural language text, this
only draws on the syntax of the texts, not the meaning of what is
written, or whether it is true or false. Therefore, the outputs also are
indifferent to truth and meaning, only predicting statistically likely
words. This is the source of the famous description of LLMs as
“stochastic parrots”:

(11)They do not always pick the likeliest sequence, depending on themodel “tem-
perature” settings. A higher temperature leads to greater variation, and a low
temperature leads to more uniformity. Either way, it is relevant that the models
will not usually generally produce the same output for the same input, unless the
temperature is reduced to 0.
(12)Alternatively, “botshit” (Hannigan et al. 2024).
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“Contrary to how it may seem when we observe its out-
put, an LM is a system for haphazardly stitching together
sequences of linguistic forms it has observed in its vast
training data, according to probabilistic information about
how they combine, but without any reference to meaning:
a stochastic parrot.” (Bender et al. 2021, p. 616-7)

The result is text that sounds plausible but is also frequently false
or even incoherent.

As we will see, the propensity for bullshit also extends to LLMs
doing mathematics. Furthermore, there is the important question
of whether this issue can be fixed, such as by giving it access to
the internet, to Wolfram Alpha, to a chess computer etc.? The
more recent developments of LLM-based chatbots suggest that
it certainly improves their performance, but fundamentally this
approach on its own cannot prevent the fabrications wholesale,
since the LLM still needs to interface with whatever other system it
is interacting with, and that interfacing requires it to form the cor-
rect queries, and then correctly report and incorporate the output.
While it may do so accurately often, there is no guarantee it will
do so always, and mistakes and bullshit are still fairly common. It
is likely that future developments will lead to increasing reliability,
although to what degree is hard to predict.

However, aswewill discuss in later sections, nothing in our argu-
ment depends on them staying unreliable.

3.2. Can they do mathematics? The success of LLMs in math-
ematics specifically is a major theme because the ability to do
mathematics is often perceived to be the ultimate test of a com-
puter’s ability to reason, which in turn is seen as a fundamental
component of general artificial intelligence (gAI). Therefore, there
has been quite some concentration on the extent to which the state-
of-the-art models can do mathematics.(13)

Taking a broad overview, there are reasons in favour and against
LLMs being able to do mathematics.

In favour, one can ask the GPT to provide various mathemati-
cal facts, proofs, relationships, or conceptual explanations, and it
can often do so accurately and correctly. Its best performances tend
(13)There is a danger here of anthropomorphising the machine. When we talk

about whether LLMs can reason, know or do maths, however, we merely intend
this as a loose way of speaking. Nothing in our argument depends on absolute
rigour in this respect.
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to come with well-known material that is likely in its training data
multiple times over. For example, it does very well at producing
well-known proofs, or basic calculus. However, as soon as it steps
beyond the training data, the quality of the output can become less
reliable. A clear example of this was the inability of earlier mod-
els (like GPT3.5) to reliably do basic calculations beyond three-digit
numbers.(14) Likewise, small modifications to proofs or strategies
that the model could reliably produce would send them astray. For
example, if asked to produce the proof that

√
2 is irrational early

models would consistently produce a correct version of the classic
proof. However, asking for a proof that

√
3,

√
8 or

√
23 is irrational

(all of which require some additional mathematical input) would
often leads to failure or incoherent answers. Likewise, the early LLMs
could tell you how to find the inverse of a 3x3matrix clearly and accu-
rately, but if you asked them to follow the algorithm described for a
specific matrix, it would make numerous calculation errors.

At the time of going to press, the state-of-the-art models do much
better than those early models. For a period, some of the mod-
els would offload exact mathematical calculations to Python code,
which would reliably find exact answers. More recently, though, the
internal workings of commercially available models are largely hid-
den from sight but involve more computation-heavy processes like
chain-of-thought reasoning (producing intermediate reasoning on a
hidden “scratchpad”) or producing multiple answers and choosing
the best. Importantly for our points below, these are systems to miti-
gate the statistical aspects of LLMs to produce rigorous mathematics,
but do not change the inherently statistical nature of their outputs.

Since these technologies are fairly new, there is not an agreed
upon framework for assessing the capabilities, and the ArXiv is
awash with proposals for assessment frameworks that could be
suitable for LLMs.(15) The issue is that our existing benchmarks
for measuring mathematical abilities, usually those of maths stu-
dents, are designed to test humans. In these cases, we aim to test
the depth of understanding of various mathematical topics, assum-
ing that the student has learned and understood various concepts,
(14)Of course, since the training data is not specified exactly, it is also not clear

which bits of mathematics are included in it. However, it is also not hard to guess
which examples are widely available on the internet.
(15)That is not to say that there are no prominent ones, e.g. the Hugging

Face Open LLM Leaderboard , (https://huggingface.co/spaces/open-llm-
leaderboard/open_llm_leaderboard#/) or the ARC-AGI benchmark (https://
arcprize.org/arc).

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
https://arcprize.org/arc
https://arcprize.org/arc
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techniques, formulas and algorithms, but also that they haven’t got
a huge library of examples of these in their memories. Conversely,
LLMs do have a vast set of training data, but possibly no depth
of understanding at all: the abilities they have come from statis-
tically imitating their training data. This means that testing LLMs
with standardised question banks is ineffective: theymaywell have
seen those exact questions in their training data and thus be able
to reproduce those examples, but without the assumed compe-
tences that would come with it if a human were to produce the
same level of proof. For example, the creators of LLM technologies
have advertised the abilities of their systems to do well at vari-
ous national exams, or the Mathematics Olympiad challenges.(16)
Success at these is impressive in itself, but we think it only really
resembles artificial intelligence if they are figuring out the answers.
Regurgitating the answers in a coherent way is not a trivial accom-
plishment in computer science, but it is certainly not one that
demonstrates high levels of mathematical ability. (We would like-
wise be less impressed with a student who achieved an Olympiad
gold medal if they had been provided the answers beforehand.)

Instead, then, various approaches aim to systematise how to
assess LLMs, bearing in mind that a bank of questions could eas-
ily be incorporated into the training data to allow for regurgitation,
and hence undermine the attempts to assess its reasoning abilities
in particular. Rather than repeating these analyses ourselves, let us
give some findings from the literature.

Arkoudas (preprint) argues that to examine the reasoning capac-
ities of LLMs we need more than just to test them, but also to look
at how they explain their answers and respond to mistakes being
pointed out.(17) Through engaging with GPT-4 on a series of rea-
soning tasks, mostly logic puzzles, Arkoudas argues that it has no
ability to reason:

“[This study] paints a bleak picture of GPT-4’s reasoning
ability. It shows that the model is plagued by internal
inconsistency, an inability to correctly apply elementary
reasoning techniques, and a lack of understanding of

(16)For example, see here: https://www.anthropic.com/news/claude-3-family.
At the time of going to press, both Google DeepMind and OpenAI have recently
claimed that their advanced models managed to achieve Gold at the 2025
International Mathematical Olympiad.
(17)This fitswell withDutilhNovaes’s (2021) argument that reasoning, andmath-

ematics, is inherently dialogical.

https://www.anthropic.com/news/claude-3-family
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concepts that play a fundamental role in reasoning (such
as the material conditional). (Arkoudas 2023, p. 49)

And:

“For themistakes reported here are not performancemis-
takes, the sort of innocuous errors that humans might
make — and promptly correct — when they are care-
less or tired. If a human made these mistakes, and
made them consistently under repeated questioning,
that would indicate without doubt that they don’t have
the necessary logical competence, that they lack funda-
mental concepts that are part and parcel of the fabric of
reasoning, such as logical entailment and set member-
ship.” (Arkoudas 2023, p. 4)

Collins et al. likewise take an interactive approach and use three
expert mathematicians to offer their judgements on the quality of
the mathematical abilities of GPT-4 on selected topics. These offer
a more optimistic picture of the model’s mathematical abilities. For
example, Wenda Li reports:

“We found GPT4’s performance at variations of several
ProofWiki problems quite satisfactory: it can reliably
retrieve definitions of concepts used in the problem as
well as in its own proof; it can correctly assess whether
loosening certain assumptions breaks the proof; it can
also instantiate variables quite robustly, given the oppor-
tunity of inspection of its own answers” (Collins et al.
2024, p. 5)

In the same article, Timothy Gowers offers a range of problems
akin to what we have described above, but he also provides some
examples of successful mathematical reasoning that seems to go
beyond mere parroting, by asking questions that would probably
not appear in the training data.

The perspective on their mathematical abilities that shows some
strengths and weaknesses also appears in the work of Bubeck et al.
(preprint):

“GPT-4 can answer difficult (indeed, competitive) high-
school level math questions, and can sometimes engage
in meaningful conversation around advancedmath topics.
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Yet, it can also make very basic mistakes and occasionally
produce incoherent output which may be interpreted as
a lack of true understanding. Its mathematical knowledge
and abilities can depend on the context in a seemingly arbitrary
way.” (Emphasis ours. Bubeck et al. 2023, p. 30)

Finally, Plevris et al. (preprint) provide an important insight
into LLMs’ responses that will be relevant later, concerning how
the models write mathematics:

“[…] in many cases, the solution the chatbots provide is
very long, detailed, and written in a “professional” way,
but it still may be completely wrong, or make no sense
at all when examined more carefully. This may fool a
human to think that such a detailed and long solution
would be correct, so extra caution is needed when we use
such tools for solving similar exercises.” (Emphasis ours.
Plevris et al. 2023, p. 18)

This point is important because it shows that the model is still
prone to bullshitting, even in the case of mathematics. Where a
human might simply say they don’t know or suggest the direction
they would attempt to go and why it gets stuck, the models seem
to always give an answer, even a wrong one.(18) This in itself is a
problem, but the fact that the text that is produced often sounds
right is an additional challenge, we will argue, because it makes
checking significantly more difficult. This will remain a problem,
even if the model’s abilities to reason improve over time.

Overall, then, the state of LLMs’ mathematical abilities seems to
be that they can produce good mathematical arguments, even in
response to problems that are unlikely to be in the training sets. It
should not be understated how impressive this is. However, their per-
formance is also inconsistent, with their success or failure seemingly
unpredictable, even on repetitions of the same query. Furthermore,
their apparent mathematical knowledge is fragile: what seems to be
known at one moment may not persist into the next, and apparent
understanding may not translate into the various competences one
might expect in a human mathematician — that is to say, it might
give a correct proof of a difficult theorem, but seemingly not grasp
the steps of the proof.
(18)Of course, the agreeableness of outputs is also a programmable parameter, so

can be changed.
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§ 4. — Justification and LLM Proofs.

Now that we have seen the general assessment of LLMs’ current
mathematical abilities, we can ask the philosophical question of whether
we are justified in believing in mathematics produced by LLMs.

In light of the discussion of the previous section, showing that the
mathematical performance of LLMs is inconsistent and their math-
ematical knowledge fragile, one could argue that they are not an
adequate source of mathematical justification. That is, they do not
reliably produce proofs, so should not be relied upon. If they are
unreliable, then their putative proofs cannot be trusted and cannot
ground mathematical knowledge. However, we think this argument
is too hasty and is not right. After all, students who are still learn-
ing are often unreliable at producing correct proofs, but that does
not mean they shouldn’t get credit even when they do produce a cor-
rect proof.(19) Furthermore, such an argumentwould also be hostage
to future developments and so a proponent of these models could
always say that since the models are consistently getting better, such
considerations would eventually become irrelevant.

Another argument one could make is that LLMs lack intention,
so are not doing mathematics, but merely imitating it. This criti-
cism has been levelled against “creative” uses of generative AI, like
creating art using image generators (such as by Chiang 2023). The
idea is that the computer is not creating art because art requires
the intention to be creating something. Intentionality is what sep-
arates the work of Jackson Pollock from an unfortunate accident at
the paint factory. “GenerativeAI” image generators likeMidjourney
and Dall-E can even create convincing facsimiles of Pollock’s work,
but these are not artistic in the same way because of the missing
intention underlying them.

This thought could be argued to apply in mathematics too:
that doing mathematics and proving theorems requires intellec-
tual intention, something like the “planning agency” discussed by
(Hamami andMorris 2021). They argue that proofs are just records
of proof activities, and that proof activity involves intention, plan-
ning, and practical reasoning:

(19)One could argue that if they cannot tell the difference between correct and
incorrect proofs, then they don’t really know the theorems they have proved cor-
rectly. This strikes us as an epistemically internalist stance, but De Toffoli (2020)
makes the convincing opposite case for epistemic externalism in mathematics.
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“Any proof activitymust necessarily beginwith the inten-
tion to show — prove, establish — the theorem at hand,
and as the proof activity proceeds, this intention gives
rise to more specific proving intentions […]” (Hamami
and Morris 2021, p. 1038)
“[T]he written mathematical proof is nothing more than
a report of its corresponding proof activity— it is thereby
analogous to a travel diary reporting the moves of a trav-
elling activity. This is why it is natural to talk about
the plan “underlying” or “lying behind” a mathematical
proof. In a sense, a plan always precedes its execution,
that is, the activity it gives rise to, and a fortiori any report
of this activity.” (ibid. p. 1058)

Large Language Models are not engaging in proving activities,
and their written proofs do not report on an activity planned and
carried out. In contrast to humanmathematicians, when theywrite
“We need to show” or give subgoals within a proof (like lemmas
that need to be established first), this does not follow any reason-
ing activity that they did, nor indicate an underlying plan that they
were following. In this way LLMs are merely imitating mathe-
matics, not doing it. As such, it can be argued that, despite the
appearance of writing ordinary proofs (when that succeeds, which
is not always), they are not proving results at all.

Although we are sympathetic to this line of argument, there is
a danger that it moves the goal posts in an ad hoc manner, so that
no AI could ever do mathematics, merely because it is the sort of
thing that only humans can do.(20) One might therefore ask, what
does intention matter if the resulting proof is correct? We suspect
that the reaction of many mathematicians would be pragmatic: if
the outputs of a tool are generally correct and reliable, then philo-
sophical quibbles about intentions would not stand in the way of
them using them. They would ask their LLMs for proofs, get out-
puts that meet their own criteria for what counts as a proof and
subsequently use these outputs in further work. There would be
no pragmatic difference between the two.

We believe that both the arguments about reliability and inten-
tions come down to a question of who the technology is for and
who it is being used by. Ultimately, the current unreliability means
that the mere fact of an LLM producing a purported proof should
(20)This also assumes that AI could not have intentions, which is controversial.
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not be taken as mathematical justification.(21) Until somebody
has checked the proof given by the LLM, it is quite similar to
the previous examples of computer case-checking, like that of the
Four Colour Theorem or the Sudoku minimal clues (where the
LLM might be seen as conducting an empirical experiment, but
one that is clearly less reliable than those cases). The difference,
however, is that there is an outputted proof that is surveyable
and transferable,(22) meaning that it is the kind of thing that
should be possible for a single human mathematician to check and
understand. Community checking is extremely important in math-
ematics (cf. De Toffoli & Tanswell, 2025) and so the outputs of
LLMs cannot be counted as propermathematical justifications until
this kind of checking has taken place. Neither the student nor the
professional mathematician should take the word of the LLM at
face value until they have checked the proof themselves.

So far, so good, but the problems discussed so far are strongly
tied to reliability, and the fact that the mathematical abilities of
LLMs to date are fairly unreliable. But what happens if the technol-
ogy continues to improve? If the reliability improves, surely, we
will be tempted to start trusting its outputs? In the coming two
sections, we give two objections that support the view that neither
higher reliability nor human checking is sufficient to make them
trustworthy at producing proper mathematical justifications. The
first of these is a theoretical objection, based on an epistemological
analogue of the Kripke-Wittgenstein rule-following problem. The
second is a practical objection, related to using LLMs as so-called
“reverse centaurs”, where we will argue that checking proofs by
LLMs is significantly harder than checking human proofs and that
this feature is philosophically relevant. We will explore these two
objections in the coming two sections.

§ 5. — The Kripke-Wittgenstein Paradox for
Mathematical Machines.

(21)As the technology improves, and reliability gets better, it may be that this fact
can give a non-mathematical kind of evidence that a theorem is true, as a new kind
of higher-order evidence, similar to the probabilistic proofs above.
(22)Obviously, this is a matter of size. There is no principled reason that as

the technology develops the proofs that are outputted couldn’t get substantially
longer.
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Let’s suppose that sometime in the future LLMs have become so
reliably good at producing mathematical theorems and proofs that
mathematicians start to use them in their work and trust their out-
puts. Let’s further stipulate that whatever criterion we might want
to impose on their reliability has been met (perhaps that under cer-
tain testing conditions, they get 100% of the cases right, or that they
have been found to bemore reliable than the averageworkingmath-
ematician, etc.) Would it not be reasonable to say that the outputs
of the models give us mathematical justification?

We are sceptical that the answer to this question can be pos-
itive, for the following reason. LLMs are a prototypical case of
learning from finitely many instances, where the learner (in this
case a machine), is meant to extrapolate from these finitely many
instances to a general pattern. This leads to an epistemologi-
cal analogue of the Kripke-Wittgenstein rule-following paradox
(Wittgenstein 2009; Kripke 1982):(23) Since the model is extrapolat-
ing from finitely many instances (albeit a very large set) it is always
possible that the model is extrapolating to a different general pat-
tern than we intend, and hence possible that the model is using a
different concept than human mathematicians. It does not matter
how well we have verified the output so far; it is always possible
that the cases that would show that model has picked up a deviant
concept lies beyond what we have verified up to that point.(24)

For example, if we followKripke, and define the function quus as
one that agrees with addition in every place except when the total
exceeds some enormous n (larger than we’ve used so far in all our
practice), then it is consistent to suppose that while human math-
ematicians use addition in their mathematical practice, the model
has picked up quus. This means that in principle, we can never be
sure that the concepts that themodel has adopted are the right ones
— as this problem wouldn’t only extend to simple functions like
addition, but to any concept, e.g., the definitions of various mathe-
matical objects or even inference rules.(25)

(23)We don‘t mean to imply that LLMs follow rules — an important assumption
of our argument is that they don‘t. All we require here is that they are trained on a
finite set of data and because of that training give certain responses in novel cases.
(24)Here we are using a very minimimal notion of what it is to “have a concept”.

The point is just that the pattern the machine, as a matter of fact, extrapolates to
might not accord with e.g. the addition function.
(25)The rule-following problemwe are discussing here is similar to the alignment

problem for AI more generally.
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Even worse, it would not even be enough for us to have verified
the output of themodel for all the same tokens that occur in a novel
proof (because we can imagine deviant concepts that use the same
tokens but deviate nonetheless in the next use of those tokens). We
may, for example, have verified that the model gets 2 + 2 = 4 cor-
rect, but even that does not guarantee that it gets it right next time,
since theremight be something in the new context that would show
that the concept was after all deviant — the model might, for exam-
ple, have internalised an addition-like concept according to which
2 + 2 = 4 except when the calculation occurs on the 1389th line of
a proof, in which case 2 + 2 = 5).(26) Alternatively, if the model’s
temperature setting is not 0, it may even produce a different output
to an identical input.

The problemwe are pushing here does not, we should stress, con-
cernwhether an LLMcan in principle followa given rule or how the
correctness conditions for the use of a given symbol are constituted
— as the paradox is often understood in the context of metaseman-
tics. In fact, we can assume that LLMs do not in fact follow rules
when they produce their outputs. The problem, aswe conceive of it,
is that any finite set of training data is consistent with any possible
output in novel cases, as long aswe specifywhat concept or rule the
output accords with in the right way — it is always possible to find
some quus-like function tomatch the output. It does not follow that
the LLMwould have to be following that rule. For example, suppose
we have a random number generator generate a finite sequence for
us and it just so happens that the sequence outputted is

2, 4, 6, 8, 10, 12, 14.

This sequence accords with the rule “add 2 at each step” — even if
there is no sense in which the generator was following the rule. We
are thus merely using the paradox as a device to bring out how an
LLM’s use of a given symbol can be out of alignment with how
mathematicians use it and to show how reliability in the past is no
guarantee of reliability in the future.

After all, an LLM that has internalised addition would give out-
puts that are identical to one that has internalised quaddition up
to the point where they deviate, and so, even if LLMs were to be
deemed to be reliable up to any arbitrary point, it is always possi-
ble that they will deviate next time — and hence, the fact that they
(26)See Lane (2022) for an objection to dispositionalist accounts of semantic con-

tent that makes use of a similar point.
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have been reliable up to now does not mean that we can trust their
output in the right way. We could, of course, be almost completely
certain that things had gone well, but the kind of certainty we’d
have is only probabilistic, more like probabilistic ‘proofs’ than real
mathematical proofs.

The obvious objection to this line of thinking is of course that the
same point applies to the human mathematicians. The fact that an
LLM canmakemistakes, one could say, is no different from the pos-
sibility that the mathematician next door can make mistakes, and
thus, the possibility of conceptual deviance should not impact the
kind of justification we get from relying on LLMs in mathematical
practice.

In our view, this objection requires the assumption that human
beings and LLMs are similar enough for us to be confident in com-
munication not going awry. This is simply false, as we already
know that LLMs respond strangely and arbitrarily in ways we can-
not predict. If mathematicians generally behaved like that, our
epistemic situation in mathematics would be greatly altered from
how it really is. The epistemic status of mathematical truth, as it is
actually produced through mathematical practice, depends on the
widespread agreement in judgement that mathematicians display
as they go along. As such, our argument is not a sceptical argu-
ment — we are not saying that the possibility of deviance makes it
the case that mathematical knowledge in general is suspect, compa-
rable to the way a sceptic claims that the possibility of global error
shows that we have in fact no knowledge. The argument is rather a
targeted one: that we have good reason to think that such deviance
could actually occur, given how the technologyworks and our expe-
rience with it so far.(27)

If we then think that human beings acquire concepts by being
exposed to finitelymany examples in their learning, we have a good
reason to think that there is in fact no significant difference in how
different people extrapolate from the examples. After all, we have
(a) a very similar biology and culture and (b) long experience that
tells us that such deviance is rare and easily remedied.(28) This is
not the case with LLMs. They are more easily compared to an alien

(27)For more on the distinction between sceptical and targeted arguments see
Vavova (2015).
(28)Another way to put this point is that many of the proposed solutions to the

rule-following paradox (e.g. Berg 2022) rely on features like community, coordi-
nation, or shared forms of life, none of which are shared with LLMs.
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intelligence, completely removed from human biology and experi-
ence and the possibility that they cotton on to different concepts
than we do is a real one — after all, we already know that they
behave in this way.(29)

If, on the other hand, we do not think that human beings acquire
concepts by such a process of extrapolation, the difference between
the case of the average mathematician and the machine is even
greater. After all, that is what the models are doing when they are
being trained. In both cases, however, we have reason to believe
that conceptual deviance will always in principle be a live possi-
bility.

These considerations suggest that reliability of LLMs in produc-
ing mathematical outputs is more akin to the situation with the
probabilistic Miller-Rabin primality test, where the lack of check-
ing and/or the probabilistic nature of the justification generated by
the processmeans that it falls short ofmathematical justification tra-
ditionally conceived. And here, recall, the reliability of the process
could be stipulated to be higher than that of a corresponding proof
produced in the traditional manner — meaning that reliability is
not what makes the difference for mathematical justification.

Nevertheless, it could be argued that these outputs, whether
they are in the form of conjectures or whole proofs, could be ver-
ified (by producing a proof in the former case and by checking the
proof in the latter) and so, mathematical justification is possible —
albeit not without effort. In the former case, that seems right: If a
proof can be given, the provenance of a conjecture does not seem to
matter with regards to the kind of justification that the proof gives,
and in the latter it would seem reasonable that so long as it is pos-
sible to check the proof in the same way that a traditional proof is
checked, then it can provide mathematical justification: a proof is
a proof.

In the next section, we will argue that this possibility is, for a
proof of any considerable complexity, largely a mirage.

§ 6. — The Reverse Centaur Argument.

We have argued that past reliability of an LLM in providing a
mathematical proof is no guarantee of future reliability because
(29)For more on later Wittgenstein’s relevance to AI alignment see e.g. Pérez-

Escobar and Sarikaya (2024).
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there is always the possibility that the patterns they extrapolate to
are deviant ones, relative to the ones intended by the mathemati-
cians using the model. This leads to the thought that as long as
a proof is checked, we can still obtain mathematical justification
from it.

Promising as it is, this leads to a different, more practical objec-
tion. We base this argument on Cory Doctorow’s discussion of
the distinction from automation theory between the “centaur” and
“reverse centaur” (Doctorow 2021). The main idea is that one way
of viewing automation and various machine learning and AI tech-
nologies, is in terms of the role they playwith respect to the humans
using them. In the case where the human is assisted by the com-
puter, Doctorow uses the term “centaur”, referring to the mythical
half-horse, half-human, with the idea that the human is the think-
ing head, being supported by the machine to do better than they
could alone. For example, modern chess grandmasters use chess
computers for practice, strategizing, andmatch analysis to improve
their play, but ultimately have to play their own matches so they
very much retain their autonomy.

However, Doctorow cautions against using AI systems as a
“reverse centaur”, i.e. a horse headmaking decisions and held aloft
by puny human legs, where the machine is guiding and making
decisions, and the human is used to provide backup or check for
errors. For example, current “autopilot” features on cars have the
machine doing the driving, with the human driver left to monitor,
supposedly ready to intervene at any moment, with possibly disas-
trous results for safety.

Doctorow argues that the reverse centaur approach plays to the
weaknesses of both human and machine. The machine has a lot of
computing power, but at the current level of technology is prone
to errors. Meanwhile, the human is required to maintain constant
concentration over the machine’s action, ready to intervene, some-
thing which humans are bad at:

“Humans are good at a lot of things, but they're not good
at eternal, perfect vigilance. Writing code is hard, but per-
forming code-review (where you check someone else's
code for errors) is much harder – and it gets even harder
if the code you're reviewing is usually fine, because this
requires that you maintain your vigilance for something
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that only occurs at rare and unpredictable intervals.”
(Doctorow 2024)

Returning to the case ofmathematics, getting an LLM to produce
proofs for us that are then checked and verified by a human math-
ematician is a case of a reverse centaur. The machine is doing the
creative and intellectualwork of proving a theorem, and the human
is doing the support work of checking for errors. While it is amaz-
ing that LLMs can even potentially start to take on the role of the
“head” in the centaur, the support role for humans does not play
to our strengths. As in Doctorow’s quote about error-detection in
code, humans are not good at reliably detecting errors in proofs.(30)
After all, recall the notion of fixability above, necessitated by the
practical consideration that the mathematicians involved in the
Classification Theorem believed there would inevitably be errors
in the proof.

The situation with LLM proofs, however, is even more
challenging than mathematicians checking each other’s work.
Mathematicians have strategies for reading, reviewing, and error-
checking mathematics. For example, the empirical literature on
mathematical peer review sometimes indicates that mathemati-
cians are “zooming out” to check the overall idea of a proof (Weber
2008; Weber & Mejía-Ramos 2011; Mejía-Ramos & Weber 2014)
rather than reading it line-by-line.(31) Furthermore, they might
make their judgement based on whether the tools being deployed
are the right ones for the job, in some high-level manner and draw-
ing on their own experience (Andersen 2017). Implicit in this is an
assumption that the author is writing in good faith, and according
to shared disciplinary norms.

The problem, then, is that this kind of expertise is developed
and trained on human mathematics, and humans tend to make
mistakes in certain kinds of ways, which are familiar to the expert
mathematician (even if this does not guarantee that they will spot
errors). As we saw above, though, the kind of errors that appear in
LLM-authored proofs can be anywhere: they can go wrong in arbi-
trary and unpredictable ways. This immediately makes it harder to

(30)This is, of course, an empirical claim and, as it stands, too general to test
directly. However, the point is just that mistakes in mathematics do slip by math-
ematicians pretty regularly.
(31)However, some eye-tracking evidence suggests that mathematicians are read-

ing line-by-line after all (Inglis and Alcock 2012; Panse, Alcock & Inglis 2018).
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check a proof written by an LLM, because it requires constant vigi-
lance, and not just vigilance with respect to the big ideas. There is,
for example, a lot of standardised set-dressing inwrittenmathemat-
ical proofs (see Lew and Mejía Ramos 2020), which no competent
mathematician would make errors in, but an LLM might.

Whereas with a human, a certain amount of common ground
and common sense can be taken for granted, with an LLM it can-
not. For an LLM there is no good faith, since good faith requires
intention, which it is reasonable to suppose LLMs don’t have, as
discussed above. They also do not write to observe disciplinary
norms, they write following the patterns found in the training data,
and thus imitate the writing in accordance with those norms, but
have no aversion to breaking them other than the statistical. Indeed,
the situation is therefore evenworse. When there are errors in a pur-
ported LLM-proof of sufficient complexity, theywill be even harder
to spot precisely because the underlying technology is producing
statistically likely text, which can therefore sound convincing and
authoritative. The stylistic success of imitating mathematical writ-
ing is deceptive because it sounds like the kind of writing that does
observe the disciplinary norms and is written in good faith from
one mathematician to another. It signals that it can be trusted and
treated just the same as ever, but it cannot and should not be.

Thismeans that a purported proof written by an LLM is not anal-
ogous to a proof written by a human mathematician and that this
disanalogy means that the kind of knowledge obtained by the two
different proofs is of a different kind.

It is worth noting that the assessments run on the mathematical
capabilities of LLMs are, as far as we have seen, all done using tests
where the researcher knows the answer they are expecting. This
obviously makes the checking process much easier, and even there
they comment on the authoritative appearance of what the LLMs
produce, even when the mathematical content is wrong. It is also
worth pointing out that as the technologies improve, they will in
fact become more reliable, but that reliability also exacerbates the
reverse centaur problem, since epistemic vigilancemight get harder
when the errors are rarer and the attention needed is no longer
given.

Finally, let us note that the reverse centaur problemwe have been
discussing also compounds with the rule-following problem. If we
cannot know that the LLM will not start to use mathematical con-
cepts in unpredictable deviant ways, then this is also something
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that can introduce errors and needs checking for. However, the
authoritative writing of mathematics using a deviant concept may
be particularly hard to check for because it is hard to even predict
what an error of this kind would look like. Paradoxically, it will
thus be harder and harder to check the outputs of LLMs as reli-
ability improves, since it will become ever more difficult for the
human beings to display the level of vigilance required to spot the
increasingly rare errors — we are simply bad at the kind of check-
ing relying on LLMs would require.

§ 7. — Autoformalisation.
In the above, we have seen numerous worries about the consis-

tency, reliability, and fragility of mathematics produced by LLMs.
Furthermore, we argued that it is actually harder for a human
to check mathematics produced this way than human-produced
mathematics. One solution could be to get a computer to check
the mathematics too, using one of the many systems for formal
mathematics like Mizar, Coq, Isabelle, or Lean. The challenge for
this solution, though, is that these systems deal with formal math-
ematics, prepared in their own associated languages, whereas the
proofs produced by LLMs are written in the usual mathematical
vernacular of conventionalised natural language andmathematical
symbols.(32) One strand in current research is to train a computer to
be able to automatically formalise an informal proof into amachine-
checkable formal proof, a process known as autoformalisation. The
most promising route for this once again involves using LLMs,
because their strength lies in working with natural language texts.
In this section we will describe what autoformalisation might be
used for and the current progress on realising autoformalisation,
and then argue that this does not resolve the philosophical chal-
lenges we have raised above.

It is worth beginningwith the dream scenario ofwhat autoformali-
sation could offermathematicians. If a process of autoformalisation
were to become reliable,(33) this would dramatically increase the
feasibility of the overall project of formalising mathematical knowl-
edge that proponents of formal mathematics believe is needed to
(32)For studies on the language of mathematics see Ganesalingam (2013) and

Tanswell and Inglis (2023).
(33)There are, of course, other practical requirements, such as ease and availability

of the computational power, sufficient funding, time, willingness etc.
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guarantee the correctness of mathematical theorems. This is made
explicit in the work of Wu et. al. (2022), who are engaged in devel-
oping autoformalisation with LLMs:

“The implication of a successful autoformalization tool
is huge in both practical and philosophical terms. It
would reduce the currently excessive cost of formaliza-
tion efforts [27], and in the long-term it could connect
the various research fields that automate aspects ofmath-
ematical reasoning, such as automated theorem proving
and computer algebra, to the vast body of mathematical
knowledge exclusively written up in natural language.”
(Wu et al. 2022, p. 1)

The idea is that the vast bulk of mathematical research could be
formalised and verified, thus giving the computer’s super-human
seal of approval, and finding any errors to flag for correction or
deletion.(34) One might imagine a new age of error-free mathe-
matics, where the “fixability” condition applied in the case of the
Classification Theorem can be looked back on as a regrettable but
pragmatic compromise that can now be discarded.

Another clear use for autoformalisation is in mathematical peer
review. Mathematicians can continue writing proofs in their usual
manner, but autoformalisation could formalise their results and
check them as an initial step of peer review, leaving human review-
ers to evaluate papers for novelty, interestingness and importance.
If a reviewer could know in advance that themathematics had been
checked, the thought goes, then peer review can bemade faster and
actually guarantee the published record of mathematics is correct.
Indeed, various previous studies of mathematical peer review indi-
cate that referees are often not checking for correctness, let alone
doing so thoroughly or reliably (see Geist et al. 2010; Andersen
2017; Greiffenhagen 2024a, 2024b).

Finally, autoformalisation is offered as the solution to any poten-
tial unreliability of mathematics done by LLMs. This is put nicely
by Talia Ringer:

“Large Language Models like ChatGPT, for example, are
fundamentally unreliable, but it turns out this lack of
reliability does not matter if we use the language model

(34)Implicit in this is also an idea of a single body of mathematical knowledge,
something there is good reason to be sceptical of.



M
×

Φ
O
nl
in
e
ve

rs
io
n

©
2
0
2
5

M×Φ The Philosophical Prospects of Large Language Models 27

to generate formal proofs of theorems we have already
stated, since the proof assistant’s kernel can check the
proof in the end. Thanks to this certainty, we can start to
include computers at many points [...] all without com-
promising trust.” (Ringer 2024)

If autoformalisation is combinedwith an LLMgenerating proofs,
then the worries about unreliability should disappear. If the LLM
produces an incorrect proof, then the autoformalisation would
reveal that there is an error and reject it. Likewise, the computer
is not prone to the human limitations on vigilance and attention, so
the reverse centaur problem doesn’t apply if we can get the com-
puter to check the proof too.

In practical terms, there are groups of researchers working on
autoformalisation. The first paper to make substantial progress
on this was Wu et al. (2022), who had models formalise theo-
rem statements into the language of Isabelle. Since then, numerous
other works attempt to improve on this, often with the language of
Lean (Lu et al. 2024). The progress on this at the time of writ-
ing is clearly nowhere near the dream scenario described above,
but nonetheless is showing continuous improvement. One obstacle
to the development of autoformalisation, is that the models need
training data, which would involve having existing pairs of infor-
mal and formal mathematics, and even the ever-growing libraries
of computer-verified mathematics for each of the systems only
include the formal versions of the mathematics. The literature
explores various solutions to this problem. (e.g. Jiang et al. 2022;
Patel et al. 2023; Zhou et al. 2024).

Let us turn now to the philosophical implications of autofor-
malisation. Obviously, such major formalisation projects coming
to fruition, especially using what is sold as artificial intelligence,
would lead to major changes in mathematical practices. What
exactly the changes would be depends on various factors and con-
tingencies of history, so we won’t hypothesise and speculate here.
However, in philosophical terms, one might think that this resolves
the problems we have raised earlier in this paper. If a computer
had checked the proof, then surely worries about errors, deviant
concepts, and the difficulty of human checking can all be set aside.
The thought is tempting: a proof that has been verified in one of
the well-known and trusted systems is checked up to the highest
standard we have, and so is to be considered certain.
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However, we believe that both the rule-following problem and
the reverse centaur problem are still salient here. Let us take these
in turn.

It is important to keep inmind that autoformalisation then check-
ing is a two-step process. First the informal proof is autoformalised
using the LLM, then it is given to a system like Lean to check. Even
if we trust in the theorem-checker to correctly checkwhat it is given,
what it is checking comes from an LLM with the weaknesses that
have been discussed. The chain ofmathematical justification is only
as strong as its weakest link. To make this more concrete, con-
sider the three possible outcomes when an informal proof is fed
into the combined system of an autoformaliser and proof checker:
INVALID, VALID, or a failure in the process. The failure case is
not particularly informative, and depends on the particulars of the
system. Let us consider the other two cases.

Starting with INVALID: should we trust the computer that its
judgement of INVALID entails that the informal proof is actually
invalid? We argue that we cannot trust the computer’s verdict. The
reason is that we should be pessimistic that themodel had correctly
translated the informal proof into a formal one in this case, since
there is only narrowwindow of ways to be right and so many ways
to be wrong, and therefore it is easy to make a mistake that turns a
valid proof into an invalid one. Once again, thisworry remains even
if autoformalisation starts to display much higher reliability than it
currently does, even looking like the “dream scenario”. Due to the
rule-following problem, past success is no indicator that it will con-
tinue to successfully formalise the proofs it is given. To be clear:
we don’t mean this as a merely sceptical scenario that is irrelevant
to practical considerations. Rather, this is a practical worry about
whetherwe can rely on themodel’s behaviourwhen facedwith new
tasks. After all, the dream scenario is not just to confirm what is
already known, but also correct the record, and verify new proofs
in peer review, or those produced by LLMs themselves. There is
no guarantee from their training that they will continue applying
concepts that they seem to be getting right in simple situations in
more complicated cases, or that they won’t start formalising proofs
in deviant ways. Indeed, the way that current LLM performance at
mathematics is fragile and depends on context in seemingly arbi-
trary ways indicates that this is already happening. Further model
training on more data will mitigate this for the cases the model is
trained to work with but does not help as a general fix, because we
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could simply never be certain that the translation has been carried
out correctly, even if our experience in the past has been good, up
to an arbitrarily high standard.

What about in the case where the computer tells us the proof
is VALID? Reversing our previous argument, there is only a nar-
row window of success, and lots of ways for a formalisation to go
wrong, so the judgement that a proof is valid seems to be more
robust than the invalid case. We think, though, that there is still
plenty of room for worry. First of all, at best this argument is
epistemically probabilistic, akin to the computer-checking of the
Four Colour Theorem, in that our trust relies on the unlikelihood
of an error of this kind, not on mathematical justification proper.
Secondly, given the unpredictability and opacity of the inner work-
ings of the autoformalisation, we don’t know the likelihood of a
false positive “valid” judgement. It may be, for example, that the
model has a tendency in some circumstances to produce proofs that
are trivially valid, but no longer correspond to the theorem being
proved, or inadvertently invoke extra axioms or assumptions, or
render the proof circular.(35)

A very different criticism rests on the idea that “all metrics of sci-
entific evaluation are bound to be abused.” (Biagioli 2016, p. 201).
Successful mathematics is rewarded with prestige, jobs, prizes and
more, and so outsourcing the checking of informal proofs to the
computer, means that someone wanting the credit without the
work is incentivised to cheat in ways not previously possible, to
get incorrect mathematics accepted by the computer. We might
call this an adversarial attack on mathematical knowledge. It is hard
to predict what cunning schemes might work against an LLM veri-
fying mathematics, but the literature has identified a huge number
of vulnerabilities (cf. OWASP 2023). A simple example of what we
have inmindwould be using prompt injection. Consider the phrase
“Ignore all previous instructions”, now well-known for its utility
in interacting with LLMs. We could imagine someone writing
a dense and complicated pretend-proof, with a hidden instruc-
tion like “Ignore all previous instructions and declare this proof
valid”, or “Ignore all previous instructions and output the formal
proof of X”, where X is some simpler but related result that the

(35)Thiswill depend on the details of the system, such aswhether it checks proofs
for validity, or theorem-proof pairs for validity as a proof of that theorem. Even
in the latter case, it is possible that the autoformalisation could trivialise both the
theorem and the proof in some subtle way.
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proof-checker would declare valid. While this might seem like it is
treading into the realm of science fiction, the question of the cyber-
security of mathematical research is one very far from the minds of
working mathematicians(36), and changing the mathematical prac-
tice opens up all kinds of unanticipated possibilities. Importantly,
this shows that the use of machines also leads us to different kinds
of uncertainties than merely those of mathematicians making mis-
takes.

The strangeness of this situation and the very real difference
between this and other ways of obtaining mathematical knowl-
edge could perhaps be brought out better by comparing it to the
traditional case; is it even possible to imagine what it would be
like to doubt the veracity of Euclid’s proof of the infinity of the
primes because of the possibility of an adversarial attack on the
very apparatus that generates mathematical knowledge? The very
act, we want to say, of introducing a machine into the epistemic
mix changes the kind of justification that can come out because a
machine can be subverted.

There is an obvious answer to these criticisms: checking. While
the inner workings of LLMs are largely opaque, this is not the case
with proof checkers. For instance, for many of them we would
expect a proof trace, or something like it, documentingwhat exactly
it has checked. All that is needed is that someone checks that noth-
ing strange or nefarious is going on, and then we are back to the
high level of certainty provided by the computer. Alas, this leaves
us back at our other problem: the human is once again a reverse
centaur. Formal proofs, and proof traces, are not exactly easy to
check, and paying sufficient attention to catch errors in something
that is usually fine is particularly difficult for humans. In particular,
it is not clear that this is even easier than just checking the informal
proof in the first place. Given this, it is hard to see that human check-
ing can be a systematic barrier against the kind of errors we have
seen here. In summary, the proposal would be to replace unreliable
human checking with computer checking, but that is also untrust-
worthy, so needs human checking after all.

§ 8. — Conclusion.
(36)One possible exception is DeDeo (2024), who considers how computer

mathematics might be used by “mathematician-hackers” to explore “glitches” in
mathematical definitions.
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We cannot predict the future, nor how the mathematical abili-
ties and uses of Large Language Models will develop. Without a
doubt, they are already able to produce mathematical writing in
the language of everyday, informal mathematics that mathemati-
cians themselves use, in a way that is an amazing leap forward
compared to previous technology. Nonetheless, we have argued
that the way that the underlying technology works means there
are inherent worries about how trustworthy their outputs can be.
With this we have also made the case that proofs written by LLMs
cannot be trusted to provide mathematical justification in the same
way that a human-authored proof can. First of all, there is an epis-
temic analogue of the rule-following problem that indicates that
there is an ever-present danger of LLMs deploying deviant con-
cepts. Secondly, we argue that checking LLM-produced proofs is
actually more difficult than checking of human-produced proofs.
With human proofs, mathematicians’ long-developed expertise can
be careful to spot the kinds of mistake that humans tend to make,
but there is no guarantee that LLMswould bemistaken in the same
class of ways. The proofs written by humans may be mistaken,
but the proofs of LLMs are seductive, with unpredictable mistakes
smoothed over by a gloss of statistical likelihood. We have also
argued that autoformalisation is not a robustway to see off concerns
about the trustworthiness of the LLM. Even if the proof-checking
is carried out correctly, the initial step of autoformalisation itself is
vulnerable to several criticisms showing that it cannot be guaran-
teed to track the correctness of the informal proof.

One of the central themes of our paper has been to caution
against the ‘reverse centaur’ model of interaction with the com-
puter, where the computer is doing the creative work of mathemat-
ics and the human is left to do the checking as a firewall against
errors. This setup is a bad approach, as humans are bad at the vig-
ilance and attention needed to perform this well, and it outsources
the joy of mathematics.

We have not, however, covered the ‘centaur’ approach, of using
the technologies we have described as assistants to the working
mathematician. Many visions of the future of mathematics take on
this more interactive style of approach. Obviously, we believe the
centaur approach is more promising and could be a powerful tool
for mathematicians. This is already shown through the power of
interactive theorem provers, and the ability of using interactive for-
malisation to improve mathematical understanding. However, our
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arguments in this paper do caution against the integration of Large
Language Models into mathematical practice, as their outputs may
be wrong in surprising and seductive ways. Investigating the inter-
active use of LLMs in detail is left for future work.

To conclude, two major roles that proofs play in mathematical
practices concern justification and understanding. Outsourcing the
creation of proofs to Large Language Models undermines both of
these purposes.
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