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§ 1. — Introduction.

Consider two mathematical questions like “Why is 4373 the sum
of two squares?” or “For f(x) = x! — 6x!0 + 1127 — 17x® 4 2247
—5x0 +10x° + x% — 2x% — x + 2, why is f(2) = 0?”. An expla-
nation for the first question might simply be a demonstration:
4373 = 3844 + 529 = 622 + 23%. An arguably better explanation,
at least for those who know Fermat’s two-squares theorem, which
says that an odd prime is congruent to 1 mod 4 (i.e., has a remainder
of 1 when divided by 4) if and only if it is the the sum of two squares,
is the observation that 4373 is 1 mod 4 (since 4373 =4 x 1093 + 1)
and is prime. Similarly, an explanation for the second question is
just the observation that (after some laborious multiplication and
addition)

2 —6x 210411 %27 —178 422 x 27 —5x 26 +10 x 2° +2° =2 x 23 —2+2 =(;
(1

a better explanation (at least for many) is the observation that
flx) = (x=2)(x1% —4x” +3x® = 1127 = 5> +x° —1).  (2)

What makes these explanations? Why is one explanation bet-
ter than another? There have been many definitions of explanation
proposed in the literature. Hempel's (1965) deductive-nomological
model does a good job of accounting for why these count as expla-
nations. In this model, an explanation consists of a “law of nature”
and some additional facts that together imply the explanandum (the
fact to be explained). In the first example, the law of nature is
Fermat’s two-squares theorem; the additional facts are the observa-
tion that 173 is a prime and that it is congruent to 1 mod 4. Similarly,
in the second example, the law of nature is the fact that if (x — m)
is a factor of a polynomial f whose coefficients are integers (i.e.,
f(x) = (x —2)g(x), where g is a polynomial whose coefficients are
integers), then f(2) = 0, together with (2).

As is well known, there are difficulties with Hempel’s account of
explanation. For one thing, it does not take causality into account;
for another, it does not take into account the well-known observa-
tion that what counts as an explanation is relative to what an agent
knows (Gédrdenfors 1988, Salmon 1984). As Gardenfors (1988)
observes, an agent seeking an explanation of why Mr. Johansson
has been taken ill with lung cancer will not consider the fact that
he worked for years in asbestos manufacturing an explanation if he
already knew this fact. Finally, this definition does not give us a
way to say that one explanation is better than another.

In this paper, I focus on the definition of (causal) explanation
given by Halpern and Pearl (Halpern 2016, Halpern and Pearl
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2005b) (HP from now on). It has been shown to do quite well on
many problematic examples for which other definitions of expla-
nations have difficulty. The definition starts with a definition of
causality in a causal model. For our purposes, a causal model
can be described by an acyclic graph. Each node in the graph
other than the roots of the graph is associated with an equation.
These equations can be viewed as encoding the steps of a proof.
In a causal model, we can talk about one event being a cause of
another. Explanation is then defined relative to an agent’s epistemic
state, which, roughly speaking, consists of a set of casual models
and a probability on them. The epistemic state can be thought
of as describing the agent’s beliefs about how causality works in
the world; an agent is said to know a fact if the fact has probabil-
ity 1 according to his epistemic state. Following Géardenfors, we
would expect an explanation to be something that the agent did
not already know.

But now there seems to be a problem: all mathematical facts
must be true in all causal models, and hence must be known by an
agent. That means mathematical facts cannot be part of an expla-
nation. On the other hand, how can we give an explanation of a
mathematical statement without invoking facts of mathematics?

In this note, I sketch a solution to this problem using the HP def-
inition of explanation; I expect that the idea might well apply to
other definitions as well. The solution takes as its point of departure
the notion of “impossible” possible worlds. This idea has a long his-
tory in epistemic logic (Cresswell 1970, Cresswell 1972, Cresswell
1973, Hintikka 1975, Kripke 1965, Rantala 1982). To understand
it, recall that Hintikka (1962) assumed that an agent considered a
number of worlds possible, and took the statement “Agent a knows
¢” tobe true if p was true in all the worlds that an agent considered
possible. So one way to model the fact that a knows it’s sunny in
Ithaca and doesn’t know whether it’s sunny in Berkeley is by say-
ing a considers two worlds possible; in one, it’s sunny in both Ithaca
and Berkeley, while in the other, it’s sunny in Ithaca and raining in
Berkeley. With this viewpoint, “possibility” is the dual of knowl-
edge. Agent a considers ¢ possible if a does not know not ¢, which
is the case if 2 considers at least one world possible where ¢ is true.

This approach also runs into trouble with mathematical state-
ments. Suppose that agent a is presented with a 200-digit number
n. It seems reasonable to say a doesn’t know whether 7 is prime;
a considers it possible both that n is prime and that n isn’t prime.



4 J. Y. Halpern MxP

But suppose that n is in fact prime. That would mean that the world
that a considers possible where 7 is not prime is inconsistent with
basic number theory. The “impossible” possible worlds approach
referred to above allows agent a to consider such worlds possible.

Here I show that the analogous approach, when applied to
causal models, allows us to deal with the explanation of mathemat-
ical statements. Specifically, in the case of the sum of squares, the
epistemic state would include causal models where 4373 is not a
prime (and/or causal models where it is not congruent to 1 mod
4); in the case of the polynomial, the epistemic state would include
causal models where x — 2 is not a factor of f. This approach will
also allow us to say that one explanation of a mathematical state-
ment is better than another.

It might be argued that what I am doing here is not really appli-
cable to explanations of mathematical statements, and that it is
inappropriate to view proofs of mathematical statement as “causal”
explanations, or to view various mathematical facts as “causes” of
other mathematical facts. To me, there is no real conceptual differ-
ence between viewing the fact that 4373 is congruent to 1 mod 4
as an explanation of the fact that it is the sum of two squares and
viewing the fact that a child spent a year learning remotely due
to COVID as an explanation of his poor performance the follow-
ing year. Moreover, in natural language, we often make statements
“the reason that the theorem is true is because ...”, followed by a
proof of the theorem. The use of the word “because” suggests (at
least to me) that people think of proofs as providing causal expla-
nations (even though the mathematical facts being proved are not
themselves causal).

Given the (quite extensive) literature on mathematics and expla-
nation (see (Pincock 2023) for an overview and references), it is
perhaps useful to compare more generally what I do in this paper
to that literature. Most of that literature views “mathematical expla-
nation” as a special type of explanation, and tries to explain what
it makes it special. Pincock analyzes various approaches to expla-
nations of mathematics in terms of five principles. The fourth
one specifically addresses this issue; it says “There is a special
way that mathematics may appear in a scientific explanation that
makes it a genuine mathematical explanation”. My goal is not
to characterize mathematical explanations, nor to carefully distin-
guish mathematical explanations from other types of explanations.
Indeed, I'm not sure that such a distinction exists. Rather, I try to



MxP Explanations of Mathematical Statements 5

show that mathematical explanations can be viewed as a special
case of the HP approach to explanation. As a result, I suspect that
my approach would not satisfy Pincock’s fourth principle. (I am
not sure, because I'm not sure what would count as a “special way”
that mathematics appears in the explanation.) That said, I hope
that even those who do view mathematical explanation as a dis-
tinct form of explanation will find the exercise of showing that they
can be viewed as an instance of the HP definition of interest.

It is also worth noting that the idea of using impossible possible
worlds when defining mathematical proofs is not new. Specifically,
Baron, Colyvan, and Ripley (2017) use impossible possible worlds
in giving semantics to the counterfactuals that arise in mathemati-
cal explanations. They also use causal models (which they call, as
is also quite standard, structural equations models) to give semantics
to counterfactuals. However, they do not use causality in their def-
inition, so their analysis is quite different from the HP approach,
which depends heavily on causality. Their focus is, roughly speak-
ing, on how to construct the “impossible” possible worlds. They do
not attempt to provide a way of determining whether one explana-
tion is better than another.

Pincock (2023) criticizes causal approaches to mathematical
explanation. Since he focuses on the definitions given by Lewis
(2000) and Woodward (2003), some of the criticisms he makes do
not apply to the HP approach. But his biggest concern is that these
approaches do not give a particular notion of mathematical expla-
nation (his principle four again) which, as I said, I am not trying
to give.

Finally, it is worth stressing that the HP approach when com-
bined with impossible possible worlds gives us a quantitative
way of assessing when and why one explanation is better than
another. To the best of my knowledge, while qualitative notions
of what counts as a better explanation have been presented (see,
e.g., (Woodward 2003) ), no formal quantitative measures of “better
explanation” have been proposed. It is clear that mathematicians
do make such assessments. As Pincock [p. 34] (2023) says “math-
ematicians value some proofs because those proofs not only show
that a theorem is true, but also explain why the theorem is true”.
While there has been interest in explanatory proofs, going back to
Steiner (1978), and Pincock’s fifth principle says “Some proofs of a
theorem explain why that theorem is the case, while other proofs
do not explain why that theorem is the case” (so that Pincock
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does not want to identify proof with explanation), there seems to
have been no attempt to quantify the extent to which a proof (or,
more generally, an explanation) explains the statement that it is
trying to explain. The definitions of explanatory power discussed
in (Halpern 2016, Halpern and Pearl 2005b) apply to explanations
of mathematical statements with no change. While the two sim-
ple examples that I focus on in this paper consider proofs of their
conclusions from an empty set of premises, the same approach can
be applied more generally to two different proofs from the same
premises to the same conclusions. As I said, the equations in a
causal model can be viewed as encoding the steps in the proof. A
model can certainly be rich enough to encode the steps of several
different proofs. We can then compare the explanatory power of
these proofs.

The rest of this paper is organized as follows: in the next section,
I briefly review causal models and the HP definition of explanation
and explanatory power. In Section 3, I show how adding “impossi-
ble” causal models allows us to capture mathematical explanations.

§ 2. — Causal models and the HP definition of
explanation.

In this section, I review causal models and the HP definition of
explanation. The reader is encouraged to consult (Halpern 2016),
from where this material is largely taken (almost verbatim), for fur-
ther details. However, it should be possible to understand how
I deal with mathematical explanations without understanding all
the details of these definitions.

2.1. Causal models. Assume that the world is described in terms
of variables and their values. Some variables may have a causal
influence on others. This influence is modeled by a set of structural
equations. It is conceptually useful to split the variables into two
sets: the exogenous variables, whose values are determined by fac-
tors outside the model, and the endogenous variables, whose values
are ultimately determined by the exogenous variables. The struc-
tural equations describe how these values are determined.
Formally, a causal model M is a pair (.*,.%), where . is a
signature, which explicitly lists the endogenous and exogenous
variables and characterizes their possible values, and .# defines
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a set of (modifiable) structural equations, relating the values of the
variables. A signature .% is a tuple (%,¥,%#), where % is a
set of exogenous variables, 7" is a set of endogenous variables,
and % associates with every variable Y € % U 7 a nonempty
set Z(Y) of possible values for Y (i.e., the set of values over
which Y ranges). .# associates with each endogenous variable
X € ¥ a function denoted Fx (ie., Fx = %(X)) such that
Fx : ( X UE%%’(U)) X ( X YG’V—{X}‘%(Y)) — %(X) This mathe-
matical notation just makes precise the fact that Fx determines the
value of X, given the values of all the other variables in % U 7.
I typically simplify notation and write X = Y + U instead of
Fx(Y,Y',U) = Y + U. (The fact that Y’ does not appear on the
right-hand side of the equation means that the value of X does not
depend on Y'.)

The structural equations define what happens in the presence of
external interventions. Setting the value of some set of variables X
to X in a causal model M = (., %) results in a new causal model,
denoted Mg, & which is identical to M, except that the equations
for variables in X in .7 are replaced by X = x for each X € X and
its corresponding value x € X.

A variable Y depends on X if there is some setting of all the vari-
ablesin % U7 other than X and Y such that varying the value of X
in that setting results in a variation in the value of Y; that is, there is
a setting 7 of the variables other than X and Y and values x and x’ of
X such that Fy(x,Z) # Fy(x/,Z). A causal model M is recursive (or
acyclic) if there is no cycle of dependencies. It should be clear that
if M is an acyclic causal model, then given a context, that is, a set-
ting i/ for the exogenous variables in %, the values of all the other
variables are determined (i.e., there is a unique solution to all the
equations). We can determine these values by starting at the top of
the graph and working our way down. In this paper, following the
literature, I restrict to recursive models. A pair (M, i) consisting of
a causal model M and a context if is called a (causal) setting.

A causal formula (over .) is one of the form [Y1 <y, ..., Y < yi| @,
where

e ¢ is a Boolean combination of primitive events (formulas of the
form X = x),

e Yq,...,Y; are distinct variables in ¥, and

® '@(Yz)
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Such a formula is abbreviated as [Y + i/]¢. The special case where
k = 0 is abbreviated as ¢. Intuitively, [Y; < y1,..., Yk < yi|¢ says
that ¢ would hold if Y; were set to y;, fori = 1,...,k.

A causal formula ¢ is true or false in a setting. As usual, I write
(M, if) = ¢ if the causal formula ¢ is true in the setting (M, if). The
= relation is defined inductively. (M, if) = X = x if the variable X
has value x in the unique (since we are dealing with acyclic mod-
els) solution to the equations in M in context i/ (that is, the unique
vector of values for the endogenous variables that simultaneously
satisfies all equations in M with the variables in % set to if). Finally,
(M,il) = [Y « gl if (My_, i) = ¢

It is worth noting that the choice of language (specifically, the
set of endogenous and exogenous variables and their values) has a
major impact on the set of possible explanations: a statement can’t
be an explanation if it cannot be expressed in the language.

2.2. Actual causality. A standard use of causal models is to define
actual causation: that is, what it means for some particular event
that occurred to cause another particular event. There have been
a number of definitions of actual causation given for acyclic mod-
els (e.g., (Beckers 2021, Glymour and Wimberly 2007, Hall 2007,
Halpern and Pearl 2005a, Halpern 2016, Hitchcock 2001, Hitchcock
2007, Weslake 2015, Woodward 2003)). Although most of what I
say in the remainder of the paper applies without change to other
definitions of actual causality in causal models, for definiteness, I
focus here on what has been called the modified Halpern-Pearl defi-
nition (Halpern 2015, Halpern 2016), which I briefly review. (See
(Halpern 2016) for more intuition and motivation.)

The events that can be causes are arbitrary conjunctions of prim-
itive events; the events that can be caused are arbitrary Boolean
combinations of primitive events. The definition takes as its point of
departure the notion of but-for causality, widely used in the law; the
intuition for but-for causality is that A is a cause of B if, had A not
occurred, B would not have occurred. However, as is well known, the
but-for test is not always sufficient to determine causality. Consider
the following well-known example, taken from (Paul and Hall 2013):

Suzy and Billy both pick up rocks and throw them at a bot-
tle. Suzy’s rock gets there first, shattering the bottle. Since
both throws are perfectly accurate, Billy’s would have shat-
tered the bottle had it not been preempted by Suzy’s throw.
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Here the but-for test fails. Even if Suzy hadn’t thrown, the bottle
would have shattered. Nevertheless, I want to call Suzy’s throw a
cause of the bottle shattering. The following definition allows for
causality beyond but-for causality.

Definition 2.1: X = ¥ is an actual cause of ¢ in (M, if) if the follow-
ing three conditions hold:

AC1. (M, i) = (X = X) and (M, i) = ¢.

AC2. There is a set W of variables in # and a setting X' of the vari-
ables in X such that if (M, if) = W = @, then

(M, i) |= [X « &, W < @] .

AC3. X is minimal; no subset of X satisfies conditions AC1 and
AC2.

ACT just says that X = ¥ cannot be considered a cause of ¢ unless
both X = ¥ and ¢ actually happen. AC3 is a minimality condition,
which says that a cause has no irrelevant conjuncts. AC2 captures
the standard but-for condition (X = ¥ is a cause of ¢ if, had X
been ¥’ rather than X, ¢ would not have happened) but allows us
to apply it while keeping fixed some variables (i.e., the variables in
W) to the value that they had in the actual setting (M, if). Note that
if W = @, then we get but-for causality. Thus, this definition gen-
eralizes but-for causality (although, for the examples in this paper,
but-for causality suffices).

Example 2.2: Suppose that we want to model the fact that if an
arsonist drops a match or lightning strikes then a forest fire starts.
We could use endogenous binary variables MD (which is 1 if the
arsonist drops a match, and 0 if he doesn’t), L (which is 1 if light-
ning strikes, and 0 if it doesn’t), and FF (which is 1 if there is a
forest fire, and 0 otherwse), with the equation FF = max (L, MD);
that is, the value of the variable FF is the maximum of the values of
the variables MD and L. This equation says, among other things,
that if MD = 0 and L = 1, then FF = 1. Alternatively, if we
want to model the fact that a fire requires both a lightning strike
and a dropped match (perhaps the wood is so wet that it needs two
sources of fire to get going), then the only change in the model is
that the equation for FF becomes FF = min(L, MD); the value of
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FF is the minimum of the values of MD and L. The only way that
FF =1isifboth L =1and MD = 1.

There is also an exogenous variable U that determines whether
the lightning strikes and whether the match is dropped. U can take
on four possible values of the form (i,j), where i and j are each
either 0 or 1. Intuitively, i describes whether the external conditions
are such that the lightning strikes (and encapsulates all such con-
ditions, e.g., humidity and temperature), and j describes whether
the arsonist drops the match (and thus encapsulates all the psycho-
logical conditions that determine this).

Consider the context where U = (1,1), so the arsonist drops a
match and the lightning strikes. In the conjunctive model, where
a fire requires both a lightning strike and a dropped match, it is
easy to check that both L = and MD = 1 are (separately) causes
of FF = 1. Indeed, both L = 1 and MD = 1 are but-for causes.
On the other hand, in the disjunctive model, where either L = 1
or MD = 1 suffices for the fire, neither L = 1 nor MD = 1l is a
cause (since changing either one does not result in there not being
a fire, no matter what we fix); the cause of the fire is the conjunction
L =1AMD = 1. As we shall see, things go the other way when it
comes to explanation.

2.3. The HP definition of explanation. Unlike cuasality, as noted
in the introduction, it is well known that what counts as an explana-
tion depends on what the agent knows (Gérdenfors 1988, Salmon
1984). Here we model an agent’s knowledge by means of an epis-
temic state (. ,Pr), where ¢ is a set of causal settings and Pr is
a probability on them. Intuitively, the causal settings in .# are
the ones that the agent considers possible, and reflects the agent’s
uncertainty regarding how the world works (represented by the
equations in a model M in causal setting (M, if)) and what is cur-
rently true (represented by the context if). As is standard, we say
that an agent knows ¢ if ¢ is true at all the settings in .#". For simplic-
ity, I assume that Pr(M, if) > 0 for each causal setting (M, i) € 7.
The( k;asic definition of explanation does not make use of Pr, just
VAL

I now give the formal definition, and then give intuition for the
clauses, particularly EX1(a).

(M The definition given here is taken from (Halpern 2016), and differs slightly
from the original definition given in (Halpern and Pearl 2005b).
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Definition 2.3: X = ¥ is an explanation of ¢ relative to a set ¥ of
causal settings if the following conditions hold:

EX1(a). If (M, ii) € # and (M, ii) = X = ¥ A @, then there exists a
conjunct X = x of X = ¥ and a (possibly empty) conjunction
Y = ijsuch that X = x A Y = i is a cause of ¢ in (M, ii).

EX1(b). (M, i") |= [X < X]¢ for all settings (M, ii') € ¥

EX2. X is minimal; there is no strict subset X’ of X such that X’ = ¥’
satisfies EX1(a) and EX1(b), where ¥’ is the restriction of X to
the variables in X.

EX3. For some (M, if) € %, we have that (M, ii)) = X = ¥ A ¢.
(The agent considers possible a setting where the explanation
and explanandum both hold.)

The explanation is nontrivial if it satisfies

EX4. (M,ii') = —(X = X) for some (M/,ii') € # such that
(M',ii") = ¢. (The explanation is not already known given
the observation of ¢.) I

The key part of the definition is EX1(b). Roughly speaking, it
says that the explanation X = ¥ is a sufficient cause for ¢: for all
settings that the agent considers possible, intervening to set X to ¥
results in ¢. (See (Halpern 2016, Chapter 2.6) for a formal defini-
tion of sufficient cause.) EX2 and EX3 should be fairly clear.

EX4 is meant to capture the intuition (discussed in the intro-
duction) that what counts as an explanation depends on what the
agent knows. In the formal model, this is captured by the set % .
But what is 7" if we are looking for explanations of mathematical
statements? If the primitive events are statements of mathematics
(e.g., 4373 is prime), then if we insist that the possible worlds are
all consistent with the facts of mathematics, there would be only
one possible world and the agent would know all facts of mathe-
matics. In this case, all explanations are known, and EX4 would
not hold. But once we allow “impossible” possible worlds, .%" is no
longer a singleton, even if we restrict the language to talking about
mathematical statements. We allow the agent to consider it possi-
ble that 4373 is not prime. This makes it possible to satisfy EX4.
Note that it means that whether “4373 is prime” is part of an expla-
nation now depends on the agent’s epistemic state. This seems to
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me consistent with the observation that when we explain a mathe-
matical theorem to others, we must tailor the explanation to what
they know (or understand).

That, of course, leaves open the question of what .%#" should be.
Whatever choice we make, we need to argue that it accurately rep-
resents the agent that we are trying to model. A poor choice would
lead us to “explanations” that would not be useful to the agent to
whom are trying to explain things. Baron, Colyvan, and Ripley
(2017) and Kasirzadeh (2023) can be viewed as focusing on what
the worlds in #" should look like, and in particular, what mathe-
matical facts should be true in an impossible possible world. Here
I largely avoid that issue; by restricting the language to only those
facts immediately relevant to the argument, I avoid the need to
worry about what else is true. I return to this point at the end of
Section 3.

That leaves EX1(a). Roughly speaking, it says that the expla-
nation causes the explanandum. But there is a tension between
EX1(a) and EX1(b) here: we may need to add conjuncts to the
explanation to ensure that it suffices to make ¢ true in all contexts
(as required by EX1(b)). But these extra conjuncts may not be nec-
essary to get causality in all contexts. At least one of the conjuncts
of X = ¥ must be part of a cause of ¢, but the cause can include
extra conjuncts. To understand why, it is perhaps best to look at
an example.

Example 2.4: Going back to the forest-fire example, consider the
following four contexts: in 1y = (0,0), there is no lightning and no
arsonist; in 17 = (1,0), there is only lightning; in u; = (0,1), the
arsonist drops a match but there is no lightning; and in u3 = (1,1),
there is lightning and the arsonist drops a match. Let M be the
disjunctive model (where either lightning or a match suffices to
start the forest fire), and let M° be the conjunctive model (where
we need both). Let 7 = {(M?,ug), (M%,uy), (M%,uy), (M4, u3)}.
Both L = 1 and MD = 1 are explanations of FF = 1 relative to .%#].
Clearly EX1(b), EX2, EX3, and EX4 hold. For EX1(a), recall that in
the setting (Md, u3), the actual cause is L = 1 AMD = 1. Thus,
EX1(a) is satisfied by L = 1 by taking ¥ = i/ to be MD = 1, and is
satisfied by MD = 1 by taking Y = y to be L = 1.

Now consider % = {(M°F, ugy), (M, uq), (M, uz), (M, us)}.
The only explanation of fire relative to % is L = 1 AMD = 1; due
to the sufficiency requirement EX1(b), we need both conjuncts.
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To take just one more example, if 73 = {(MF, uq), (M, u3)},
then MD = 1 is an explanation of the forest fire. Since L = 1 is
already known, MD = 1 is all the additional information that the
agent needs to explain the fire. This is a trivial explanation: since
both MD = 1and L = 1 are required for there to be a fire, the agent
knows MD = 1 when he see the fire. Note that MD =1 AL = 1is
not an explanation; it violates the minimality condition EX2. L =1
is not an explanation either, since (M€, u1) = —[L < 1](FF = 1),
so sufficient causality does not hold. I

2.4. Partial explanations and better explanations. Not all expla-
nations are considered equally good. Moreover, it may be hard to
find an explanation that satisfies EX1 for all settings (M, i) € %;
we may be satisfied with a formula that satisfies these conditions
for almost all settings. In (Halpern 2016), various dimensions
along which one explanation might be better than another are
discussed. I focus on two of them here. Here the probabil-
ity Pr in the epistemic state (.#,Pr) comes into play. Given a
causal formula ¢, let [¢]» = {(M, i) € # : (M) = ¢}.
If both X = % and X’ = ¥ are explanations of ¢ relative
to #, X = X is preferred relative to epistemic state (.#,Pr)
if Pr([X = o | [olw) > Pr([X = #w | [olx)
that is, if its conditional probability is higher. For example, if
Pr({(M% uy), (M%,u3)}) > Pr({(M9,uy),(M?, u3)}), then L = 1
would be viewed as a better explanation than MD = 1 along this
dimension; it is more likely conditional on [¢] » (or, equivalently,
likely, since [¢] » has probability 1).

Another consideration takes as its point of departure the fact that
the conditions EX1(a) and (b) are rather stringent. We might con-
sider X = ¥ quite a good explanation of ¢ relative to .# if, with
high probability, these conditions hold. More precisely, for EX1(a),
consider the probability of the set of settings (M, if) in % for which
there there exists a conjunct X = x of X = ¥ and a (possibly empty)
conjunction Y = §such that X = x A Y = §isa cause of ¢ in (M, if),
conditional on X = ¥ A @; for EX1(b), consider the probability of
the set of settings (M, i) € % for which (M,il) = [X « *|¢.
The higher these probabilities, the better the explanation. This also
allows us to consider a partial explanation, one which satisfies EX1
with a probability less than 1.
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§ 3. — Dealing with explanations of mathematical
statements.

We can now return to the questions that motivated this paper.
If we are looking for a (causal) explanation of “Why is 4373 the
sum of two squares?”, we need to start with a causal model. If the
explanation is going to be “it is a prime congruent to 1 mod 4", the
model needs to include variables Py373, 1M44373, S254373, where the
first has value 1 if 4373 is an odd prime and 0 otherwise; the second
has value 1if 4373 is congruent to 1 mod 4, and 0 otherwise; and the
third has value 1 if 4373 is the sum of two squares and 0 otherwise.

Now it is a fact of mathematics that 4373 is prime, congruent to
1 mod 4, and the sum of two squares, but since the agent does not
necessarily know that (under some reasonable interpretation of the
word “know”), the agent can consider models where at least Py373
and 5254373 take on value 0. (I am implicitly assuming that comput-
ing whether a number is congruent to 1 mod 4 is so simple that the
agent does in fact know that 1M44373 = 1; nothing in the following
discussion would change if the agent does not know this.) Assume
that the value of Py373 and 1M4,373 is determined by an exogenous
variable U that takes on four possible values of the form (i, j), where
i,j € {0,1}, as in the forest-fire example; the value of i determines the
value of Py373 and the value of j determines the value of 1M44373.

If we further assume that the agent knows Fermat’s two-squares
theorem, then in all models that the agent considers possible, if
P4373 = 1and 1M44373 = 1, then 5254373 = 1, and if P4373 =1
and 1M44373 = 0, then 5254373 = 0. The question is what should
happen if Py373 = 0. While it is not hard to show that no number
congruent to 3 mod 4 is the sum of two squares, there are non-
primes congruent to 0, 1, and 2 mod 4, respectively, that are the sum
of two squares (like 8, 25, and 18, respectively), and non-primes
congruent to 0, 1, and 2 mod 4 that are not the sum of two squares
(like 12, 33, and 6, respectively).

It seems reasonable to assume that the agent is uncertain about
the effect of setting Py373 to 0 on S2S. (Recall that although this
would result in an “impossible” possible world, the agent still con-
siders it possible.) Thus, I consider two causal models that differ
only in what happens if Ps373 = 0: in one of them, call it My, it
results in 5254373 = 0; in the other, call it M,, results in 5254373 = 1.
(Otherwise, the models are identical.) Let ug, uq, up, and us
be the contexts where U takes on values (0,0), (0,1), (1,0), and
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(1,1), respectively. Since I am assuming that the agent knows that
1M4y373 = 1, [ take # = {(Ml,ul), (Ml, ng), (Mz, Ml), (Mz, u3)}.

It is now straightforward to show that, relative to %", the fact
that Py373 = 1 A 1M4y373 = 1 (i.e., the fact the 4373 is an odd prime
and congruent to 1 mod 4) is an explanation of the fact that 4373
is the sum of two squares. Let us go through the conditions in
Definition 2.3. For EX1(a), there are only two settings in %" that
satisfy P4373 =1A 1M44373 = 1, namely (Ml,u3) and (Mz, Mg). In
both of these settings, 1M44373 = 1 is a cause of 5254373 = 1. It
is in fact a but-for cause: if we set 1M44373 = 0, then 5254373 = 0
(since Py373 = 1 continues to hold). EX1(b) is immediate, since if
4373 is an odd prime that is congruent to 1 mod 4, then it is guar-
anteed to be the sum of two squares (the equations in M; and M,
enforce this). For EX2, note that Ps373 = 1 does not satisfy EX1(a)
and 1M4,373 = 1 does not satisfy EX1(b). EX3 clearly holds, since
P4373 =1A 1M44373 = 1A 5254373 holds in both (Ml, M3> and
(Mz, Ll3>. Finally, EX4 also holds; —|(P4373 = 1A1M4y373 = 1) holds
in (My,u1) and (M, uq).

Although 1M44373 = 1 is known (it is true in all settings in .%"),
it is part of the explanation. In general, an explanation will not
include facts that an agent already knows unless these facts are
necessary to show causality (i.e., EX1(a)). Nothing would have
changed if 1M44373 = 1 were not known (i.e., if (My, ug), (M, uz),
(Mp,ug), and (M, up) were in #°): Pyzz3 = 1 A 1M4y373 = 1 would
still have been an explanation of 5254373.

Now consider the other possible explanation of 4373 being
the sum of two squares, namely the demonstration that
4373 = 622 + 232, We could capture this by adding another
variable to the model, 8254373,62,23/ such that 5254373,62,23 = 1if
4373 = 622 + 23? and 0 otherwise. Again, the agent can consider
it possible that 5254373,62,23 = 0. Setting 5254373,62,23 = 1 should
result in 5254373 = 1, independent of the values of the other
variables (although, in light of the theorem, the agent would not
consider possible a model where 52543736223 = 1, Paaz3 = 1, and
1M44373 = 0). But what if 52543736203 = 0?7 Assume that in this
case, the agent is in the same situation he was in before, and consid-
ers all the settings in % possible. More precisely, let Mj and M,
be like M and Mj, respectively, except that (1) the exogenous vari-
able U’ now has values of the form (i, j, k), fori,j,k € {0,1}, and
determines Py373, 1M44373, and S$2S54373 6203 in the obvious way;
and (2) the equation for 5254373 is such that if 52543736003 = 1,
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then 5254373 = 1 in both models, while if 5254373 62 23 = 0, then the
value of 5254373 is determined in M} (resp., M}) in the same way
that it is determined in M; (resp., My).

Let ug, ..., uy, be the contexts where U’ takes on values (0,0,0),
(0,1,0), (1,0,0), (1,1,0), (0,0,1), (0,1,1), (1,0,1), and (1,1,1),
respectively; let J#'={(M',u") : M' € {M}, My}, u’ € {u}j, u}, us, us}}.
S2S43736203 = 1 is not an explanation of S2S,373 relative to %
because it fails EX1(a). For example, S254373 6223 = 1 is not a cause
of 5254373 = 1in (M), uf). Of course, this conclusion depends on
how we modeled the set .#” of possible worlds. As I noted earlier,
the “right” choice of #’ depends on the agent we are trying to
model. While I think that the .#” defined here is reasonable, in
the sense that it is a reasonable representation of the beliefs of a
typical agent, there are surely agents for whom other choices of
2" would be appropriate; for such agents, S2S43736223 = 1 might
well be an explanation.

The analysis of the second example is similar. The fact that x — 2
is a factor of f(x) is an explanation of the fact that f(2) = 0 (in the
model where there is a variable F,_, thatis 1 if x — 2 ia a factor of
f(x) and 0 otherwise and a variable f2EQ thatis 1if f(2) = 0and 0
otherwise). It seems reasonable to expect the agent to understand
that x — 2 is factor of f(x) iff f(2) = 0, and for the equation for
f2EQ to reflect this, so the fact that x — 2 is a factor of f is a cause
of f2E0 = 1. The situation for (1) is a little more subtle. It is not
immediately transparent that the left-hand side of (1) is the result
of plugging in 2 for x in the polynomial f. Thus, the agent might
consider it possible that (1) not hold and yet f(2) = 0; more pre-
cisely, the agent would consider possible a model where (1) does
not hold and f(2) = 0. In this model, (1) is not a cause of f(2) =0,
so if the agent’s set of possible settings includes this model, (1)
would not be an explanation of f(2) = 0. I would argue that at
least part of the reason that people find the fact that x — 2 is a factor
of f a better explanation for f(2) = 0 than (1) is because the fact
that f(2) = 0 is not immediately obvious from (1).

Now consider the quality of the explanation. Although, asThave
argued, the fact that 4373 = 622 4 232, that is, S2543736203 = 1, is
not an explanation of 4373 being the sum of two squares, it could
be a good partial explanation. It does satisfy EX1(b) in all settings
in #, but satisfies EX1(a) only in (M}, %), so how good a partial
explanation it is depends on the probability of (M}, u5). By way of
contrast, Pyz73 = 1 A 1M4y3,73 = 1 satisfies EX1(a) and EX1(b) in
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all settings, so no matter what Pr is, it is at least as good an expla-
nation as 5254373 62,23 = 1, and a strictly better explanation, at least
as far as this consideration goes, if Pr(Mj, us) < 1.

On the other hand, the probability of Pys73 = 1 A 1M443,73 = 1
conditional on 5254373 = 1 is not necessarily higher than the proba-
bility of S254373 62,23 = 1 conditional on 5254373 = 1; it depends on
the relative probability of {(Mj,u3), (M, uy), (M5, u3), (M5, uf)}
and {(Mj, ug), M5, ur,)}. While I have placed no constraints on Pr,
there is at least a heuristic argument that the agent should consider
the former event more likely than the latter: by the prime number
theorem (Jameson 2003), there are roughly In(n) prime numbers
less than 7; it seems reasonable to expect roughly half of them to
be 1 mod 4. On the other hand, there is at most one number less
than n that is 622 + 232. If Pr respects this reasoning, then again,
Py373 = 1 AN 1M44373 = 1is a better explanation of 5254373 = 1 than
S254373,6223 = 1.

In the second example, considering EX1(a) and EX1(b), arguing
just as in the first example, the fact that x — 2 is a factor of f is clearly
at least as good an explanation as (1), and a strictly better explana-
tion if the agent places positive probability on a setting where (1)
does not hold and f(2) = 0. But now considering the probability
conditional on f(2) = 0, the fact that x — 2 is a factor of f has prob-
ability 1 (since the agent is assumed to know that f(2) = 0iff x — 2
is a factor of f), so again it is at least as good an explanation when
considering the conditional probability, and a strictly better expla-
nation if the agent places positive probability on a setting where
(1) does not hold and f(2) = 0.

I close by considering an issue raised by Lange (2022). He points
out that, with a counterfactual account, a given mathematical fact
may have arguably too many explanations. He gives as an example
the problem of explaining the fact that 123284 is divisible by 37.
He points out that, according to the counterfactual account that he
discusses, all of the following are explanations:

e 123321 = 123284 + 37, 123284 is divisible by 37, and a + 37 is
divisible by 37 iff a is divisible by 37.

e 123321 = 123358 — 37, 123358 is divisible by 37, and a — 37 is
divisible by 37 iff a is divisible by 37.

e 444 is divisible by 37, 123 + 321 = 444, and 4 is divisible by
37 iff the number obtained by taking a’s digits (in base 10)
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in groups of 3, beginning from the right, and adding those
numbers together, is divisible by 37.

Each of these statements could potentially be an explanation in the
framework presented here as well provided that the relevant primitive
events are in the language.(?) We can think of the language as describ-
ing concepts that are salient to the agent. It seems to me unlikely
that the relevant facts in the explanations above are salient to the
agent, but it is certainly not impossible. For example, suppose that
we have, for some reason, been discussing the number 123284 and
the fact that it is divisible by 37. In that case, it seems reasonable to
take the second explanation as acceptable.

The approach taken here also gives us another way to deal
with the plethora of possible explanation: not all explanations are
equally good. While I have no formal proof of this fact, I believe
that that the goodness of explanations will align well with what
working mathematicians take to be good explanations.

To summarize, what counts as an explanation under the
approach proposed here is heavily dependent on the choice of lan-
guage and what the agent knows. The goodness of an explanation
(which gives us a way of preferring one explanation to another)
also depends on the agent’s epistemic state, and how likely the
agent takes various impossible possible worlds to be. This seems
to me completely consistent with how actual explanations work.
When giving an explanation, we are (or should be) sensitive to
what the agent to whom we are giving the explanation already
knows and considers possible, and to using appropriate concepts.
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